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INTEGRAL MANIFOLD IN SYSTEM DESIGN

'WITH APPLICATION TO FLEXIBLE LINK ROBOT CONTROL

ABSTRACT

* The integral manifold concept is used in this thesis for controller design in various prob-

lems. A definition and the conditions for the existence of the integral manifold are given.

Integral manifolds in linear systems are analyzed with special attention given to how the

linear system possesses an input dependent manifold. Flexibility in flexible link robots is

shown to be a cause for phase delay, which is reduced by a corrective controller based on the

integral manifold concept. For a class of nonlinear systems with nonlinear output, we

designed a nonlinear PI controller that achieve asymptotic tracking and disturbance rejection

of bounded signals which are not only unknown but also slowly varying. Finally, we showed6

the existence of a lower order optimal problem which is equivalent to a singularly perturbed

optimal problem with initial conditions restricted to a manifold.

Throughout this thesis. results obtained from the manifold approach are shown to be

consistent with. and sometimes even extend, some established results in singularly perturbed

IX systems.
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The integral manifold concept is used in this thesis for controller design in various prob-

lems. A definition and the conditions for the existence of the integral manifold are given.

.% Integral manifolds in linear systems are analyzed with special attention given to how the
1A

linear system possesses an input dependent manifold. Flexibility in flexible link robots is

shown to be a cause for phase delay, which is reduced by a corrective controller based on the

integral manifold concept. For a class of nonlinear systems with nonlinear output. we

designed a nonlinear PI controller that achieve asymptotic tracking and disturbance rejection

of bounded signals which are not only unknown but also slowly varying. Finally. we showed

the existence of a lower order optimal problem which is equivalent to a singularly perturbed

optimal problem with initial conditions restricted to a manifold.

Throughout this thesis, results obtained from the manifold approach are shown to be

consistent with, and sometimes even extend, some established results in singularly perturbed

systems.
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1. INTRODUCTION

1.1. Definition of an Integral Manifold

The concept of the manifold has been used as first integrals for classical Hamiltonian sys-

tems from 1700-1800. In the context of this thesis, as a decomposition tool. the ideas ori-

ginated from [1-5]. A definition of an integral manifold is now given.

For the following system of differential equations.

X =f(X .y .t) 01.1.1)

.' y = g(x , y .0t (1.1.2)

where x ER ER'" and t ER

a set M CR' x Rmx R is said to be an integral manifold for (1.1.)-(1.1.2) if for

-(X -Y 0 , t 0) E M. the solution (x (t y (t) t t ) = X y (t 0)y 0 is in M for all t E R.

In other words.

y =h(x .t) (1.1.3)

is an integral manifold for (1.1.1)-(1.1.2) if given the initial conditions (x(t) .y(to) .t)

that satisfy

y(t 0 ) = h(x(t 0 ) .t,)

we have (1.1.3) hold for all t E R . The flow on this manifold is governed by the n-

dimensional system

x f (x ,h(x ,t).t). (1.1.4)

Note from (1.1.4) that we are dealing with an n-th order differential equation rather than the

(n+m)-th one in the original system (1.1.1)-(1.1.2).

Some of the advantages of using the integral manifolds in systems and control are as fol-

~ ~: lows:

(i) reduction of computational complexity due to system order reduction,

(ii) accounting for the intrinsic slow effect of parasitics in singularly perturbed systems by

treating the parasitics state y as y = h (x , t , e), a function of other state x. perturbation

)LA1SA . .
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parameter E . and possibly time variable t.

(iii) an analysis tool to understand some known phenomena. e. g., unsatisfactory performance

of iexible robots in high-frequency maneuvers and minimum fuel paths in long-rar.ge cruises.

Applications of the integral manifold theory abound in many areas. Some of its applica-

tions are flexible joint robot control [6]. slow adaptation in adaptive control [7], tracking and

disturbance rejection in nonlinear systems [8. power system modeling [9]. and synchronous

machine modeling [10].

Mathematical treatment of the integral manifold theory, as in [11], sometimes is too res-

tricted in relevant control problems. On the other hand, there are many special features in

specific control problems that can be of great use when the manifold approach is being

employed. It is this gap that we want to fill in this thesis.

A summary of the research being done in this thesis is as follows.

* Existence of integral manifolds in the linear system: an integral manifold in the form of

invariant subspace. z = Lx , is postulated for the linear system:

_1 = A(1.1.5)

Under some assumptions on the A,) entries of the matrix A the existence of such a manifold is

J, , guaranteed. Necessary and sufficient conditions for z = Lx to be a linear integral manifold for

the linear system are also given in terms of an identity relating L to the A,, entries. An

explicit expression for one such L is found and represented by the slow eigenspace of the sys-

tem matrix A. Once the existence of the linear integral manifold for (1.1.5) is assured, we J%

* proved that there also exists a shifted manifold =Lx + p (u ) for the system with input u. i.

e.,

.A + Bu

In other words, there exists a family of input dependent shifted manifolds. Singularly per-

0
*~, *~w*
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turbed s'stems are treated as a special case. and explicit expressions are found for L and p as

rasymptotic series in 6 . Linear time-varying systems are also discussed as an extension to the

linear time invariant case with some extra conditions imposed on the A,) (t ) entries.

e Flexible link manipulators: Modeling flexible link robots leads us to a singularly perturbed

system in which the perturbation parameter is related to the reciprocal of the flexibility con-

stant. We interpret the presence of flexibility in the robots as a cause for phase delay in its

performance, especially at high frequency maneuvers. Time domain analysis using the mani-

• ." fold approach leads us to a phase delay corrective scheme equivalent to that from the fre-

quencv domain analysis. A case study of an interconnected mechanical system. which shares

the same basic principle in the modeling of flexible joint robot as in [6]. reveals the fact that

the overall system has a perturbed natural frequency and a perturbed damping ratio due to

-the presence of flexibility in the interconnection.

a Tracking and disturbance rejection in nonlinear systems: For a class of linear equivalent

nonlinear system with nonlinear output, we designed a controller that not only linearizes and

stabilizes the nonlinear system but also achieves tracking and disturbance rejection of unk-

nown but slowly varying signals.

* * Optimal control systems: We proved the unique existence of a lower order optimal control

problem that is equivalent to a singularly perturbed linear system with a quadratic cost func-

, " tional to be minimized. The trajectory of the singularly perturbed optimal system is charac-

terized by a fast convergence, with 0 (e) cost, to a manifold to which the subsequent motion is

restricted. Complete separation of a singularly perturbed optimal system into two is also

'-. :' given. One of these corresponds to the optimal problem as restricted to the manifold, whereas

the other one is an optimal problem concerning the convergence of the trajectory to the mani-

, fold.

I.'
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1.2. Existence of Integral Manifolds

(a) We are mainly interested in the singularly perturbed system

X f(x .y .t , ) (1.2.1.a)

E} =g(x ,y ,t ,E) (1.2.1.b)

dx
where x E R ,y E R"' It ER . and E is small positive number. x - etc.,

dt

Conditions for the existence of an integral manifold . y = h (x , t , E) . for system. (1.2.1) are

the following[1].

M: Setting g (x . v . t ,0) = 0 gives the isolated solution v = h0 (x .t ) for x ER . t E R

M2: Functions f. g and h are all C functions for

x E R I v - h(x) I - p t E R and 0 E 6< E , where p and EO are some positive

nonzero numbers.

_M3: All the eigenvalues of - evaluated at (x . h fx . ,. 0) have negative real parts.
stYe..

Re X. (-) < 0 . I < i < n

w here X. 's represent eigenvalues.

Comments: M3 is a necessary and sufficient condition for trajectories with initial condi-

'4- tions not on the integral manifold to converge to the manifold asymptotically. It is a local

, 'N'result and is applicable to those trajectories with initial conditions within the region of attrac-

tion of the manifold. We will therefore refer to the integral manifolds of the systems satisfy-
" , ... .O g

ing M3 as attractive." Condition M3 can be relaxed to only requiring that the Jacobian -

be nonsingular. Detailed proof can be tound in [11].

,. ~(b) For the periodic nonlinear system

%
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dx
-- = X(x . ' .t ) (1.2.2.a)
dt

dv
- Y(x . Vt) (1.2.2.b)~dt

wherex ER ,y ER ,tER and

X(x .y .t +w)=X(x .y ,t)

Y(x .y .t +o)=Y(x ,y .t)

there exists a bounded periodic integral manifold y =g(x . t) for (1.2.2).

Se g [I(x . t Kl A and g(x ,.t +wJ) = g (x . t) if

-' (i) X and Y are ontinuous and have continuous and bounded partial derivatives with respect

to x and v for all x and t. and for 11 y K where . denotes the Euclidean norm and K is

a positive number.

, d

d(ii) -11y1 < 0. for all x and t. and Ily11=K . ie Ily11 < K . for all x and t.

dr

(iii) Let

P V(x .* .t x + ax

W(x .Vt)= --y+a

where V(x .y .t) has eigenvalues X, (x .y .t) .1 < k < n . and W(x .y ,t) has eigen-

Nax
values /i (x ,V t), 1 j < m " - denotes the partial derivatives of X with respect to x

ax

and A T denotes the transpose of A.

Also let

MinA Max{I

X and A have the prope-ties that

X > ~iand 4A <0.

(i.)

OWN
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4aO3 < (X )2'.

A here

Proof can be found in [5]. a x

(c) Center manifolds

For the following autonomous system

x = Ax + f (x . y) (1.2.3.a)

= By + g (x y) (1.2.3.b)

,,here.i ER Y , E R'1

v (x ) is a center manifold to (1.2.3) if h is smooth. h(0) = 0. and h'(0) - 0.

Conditions for the existence of center manifolds are the following:

4i) f EC- g EC andf (0.O)=f(0.0)=O,g(O.0)=g(O.0)=0.

(ii) Re(X, (A)) < 0 . 1 K i n , i. e., all the eigenvalues of A have negative real parts.

(iii) Re(X. (B)) =0. 1 j m

If (1.2.3) satisfies (i)-(iii). then there exists a center manifold

.v =h(.v )forlx I < 5.h E C andt ER.

Proof is based on the contraction mapping principle. Details can be found in [2].

00

'S4
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2. INTEGRAL MANIFOLDS IN LINEAR SYSTEMS

2.1. Introduction

*' , Linear systems are special cases of nonlinear systems. In our investigation on integral

manifolds, all the results from nonlinear systems are applicable in linear cases. Due to its

linear structure, the application of superposition and Laplace transform are made possible. It

is through this that we gain insights into the geometry and analysis of integral manifolds in

the control theory. For the ease of illustration. we will concentrate on linear time-invariant

systems and treat time-varying systems as an extension of the time-invariant cases.

2.2. Existence of Linear Integral Manifolds in Linear S3stems

Start with the following linear time-invariant system:

X 11 A 12 X

(2.2.1)
z I = A 2 1 A 22 z

where x ER z ER".A 1 1 ER A 12 ER A2,ER ,and A 22 ER are constant

matrices

Assumption 2.2.1: A,2 is nonsingular.

Due to the linearity of (2.2.1). we shall propose a linear integral manifold of the form

z = Lx (2.2.2)

where L ER' '" is a constant matrix.

., Lemma 2.2.1

. For = Lx to represent a linear integral manifold for the linear system (2.2.1), it is

necessary and sufficient for L to satisfy the following identity.

A421 + A ,,L = L (A 11 + A 12L) (2.2.3)

Proof.

I Differentiate both sides of (2.2.2).

eN,
ID.

!i : .
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LX (2.2.4)

Since (x .z ) is governed by (2.2.1). we have upon substituting (2.2.1) and (2.2.2) into (2.2.4)

(A 21+A 22L )x = L (A t + A 12L )x (2.2.5)

which results in the identity (2.2.3) and completes our proof on the necessity part. The

sufficiency part follows in the reverse order trivially by noting that the invariant subspace

- = Lx is one of the integral manifolds subject to (2.2.1).

QED

The main requirement for the existence of a solution L to (2.2.3) is Assumption 2.2.1.

Details can be found in [121.
%

NWhen our linear system is in singularly perturbed form we have the following result based on

* a similar argument.

Corollary 2.2.1

The singularly perturbed system

x A 11 A 1 2 X 
91.A4X (.26__f _,_,="A (2.2.6). ,

F,; I=IA 21 A 22 z

where EE[ - E E E > 0 is a small positive number, has a linear integral manifold z = Lx

and L satisfies
A 21 + A ,2L = -L (A 11 + A 12

L )(2.2.7)

Moreover, L can be solved as -
-A 1 A +0(E) (2.2.8)

Proof:

Solution of L can be found by equating coefficients of different powers of e on both sides

of (2.2.7).
~N

QED

Note with assumption I our singularly perturbed system (2.2.6) exhibits a two-time scale
prlm

property due to a clear separation of eigenvalues into two groups, small and large. respec-

0
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tivelv. To facilitate our discussion on the more general system (2.2.1). we adopt the following

assumption.

Assumption 2.2.2:

=9 System (2.2.1) possesses n relatively small and m relatively large eigenvalues

In this context, without loss of generality, we shall refer to x as the "slow" mode and z as the

"fast" mode in the subsequent discussion. The existence of a solution to (2.2.3) is guaranteed

through Assumption 2.2.1, and some bounds on the A,, entries which in turns are related to

Assumption 2.2.2[12]. We thus have a linear'integral manifold for system (2.2.1). When sys-

tern (2.2.1) is restricted to the invariant subspace characterized by z = Lx , the slow variable

is governed by

W =(Ala + A 12L )x =A, x (2.2.9)

We now state a fact on how L is expressed in terms of the slow eigenspace of (2.2.1).

Lemma 2.2.2

If v, = is a slow eigenspace for (2.2.1) and v, is nonsingular, where

• . E ,, .- 1

v1 ER ..... R . then L = %vv . is one of the solutions to (2.2.3) subject to the linear

system (2.2.1). Moreover L is independent of the basis chosen for the slow eigenspace v,

Proof:

We will show that (2.2.3) is equivalent to the following:

!!i 1A,, A 1l2

R -a , 1 -o 22 L (2.2.10)

-l , weeIE n-nII R are identity matrices.

Expand (2.2.10) by multiplying out the matrices and using (2.2.3). we get
he

th vryg2.) L (A 11 + A 12L) -(A 2 1 + A 2 2L) =0 ,
f ' thus verifying (2.2.10).

I

Suppose V = is a slow eigenspace for (2.2.1). Multiply v1 on both sides of (2.2.10) and
V 2

4
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take L = v 2 v

LL

1"m 2 AV 1 1, J I]v' (2.2.11)
-I M ""'21 V1

Since v, is a slow eigenspace of (2.2.1). we have

A 
1

= (2.2.12)

V 2  V 2

where A, is a diagonal matrix which contains the n small eigenvalues of A as its diagonal ele-

merits. In a more general sense. A, can be a matrix in Jordan canonical form.

Hence. (2.2.11) becomes K

*~~~~~A =L (V~yA 2V Ivv1  -IV'A ( v 1 -v )A, 0.

This proves that L = v 2v 1 is one of the solutions. To see that L is independent of the basis

of v, . we take a new basis

M
S', =V , -v 2 MJ = v 2

niT'
where M ER and is nonsingular.

, ,v = (v 2 M )(M v1 ) V 2 V

This completes our proof.

QED

For linear time-varying systems we consider

ez z (2.2.13)

where E is a small number, and A is the same dimension as in (2.2.1).

Assumption 2.2.3: In our domain of interest D, A,] (t) are continuously differentiable and

bounded. and A 12 A 21 and A 22 are bounded.

0V



With this assumption we are also assured of the existence of a linear integral manifold z

=L(t) x. where L(t) satisfies

6L = A 2 1 + A ,L - EL (A 11 + A 1 2L) (2.2.14)

The solvability of L in (2.2.14) is guaranteed by Assumption 2.2.3. Detailed proof can be

found on p. 212 of [13].

Once the existence of the integral manifold for our linear system is assured, the question

regarding the existence of the integral manifold for the same system with input is best

answered by the next theorem.

Theorem 2.2.1

If a linear system without input possesses a linear integral manifold M o . characterized

by z=Lx. then for every piecewise continuous and Laplace transformable input u to the same

system it has a linear integral manifold M, characterized by z = Lx + p and p satisfies

j P = (A 2 2 -LA 12 )p + (B 2 - LB 1)u . (2.2.15)

Proof:

A (t) Z(2.2. 16.a)

Solution to (2.2.16.a) is given by

t = (t , to)  0 ) (2.2.16.b)Z (t) ' (t 0)

where (t . t,,) is the state transition matrix and satisfies

.D = A (t ) 0.

When the linear system (2.2.16.a) has an input, we write
IS

A (t) z + B(t )u(t (2.2.17)

Recall that (t . t,) is the state transition matrix of (2.2.16.a), the complete solution to

(2.2.16.b) is
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( Ct = t .(o) + f (t r)B (r)u (r)d "f(t) (t 0 ) 1

(t to) (to) + [( ) (t

1z (to) [z" ()

Define

Since 0 , we have 1

x (t C =to) 0 )

*- (t) 1(to)

thus,

jJA (tjx (2.2.19)

If (2.2.16.a) has a linear integral manifold z L (t )x . then (2.2.19) also has one given by

- = L (t ). From (2.2.18)

Z = +zu =Li +: =z, +L(x -x,)

= Lx + (z,, - Lx,, ) = Lx + p (2.2.20)

Note that p (t ,) = 0.

To see what p should satisfy, we consider

z Lx +p

Differentiate both sides.

z = Lx + Li + p

Substitute (2.2.20) into the above equation.

(A 1 +A2,L)x +A 2p +B 2u =Lx +L[(A1 1 +A 1 2 L)x +A 1 2p +B ul+p (2.2.21)

By the identity on L. i. e.. (2.2.3). (2.2.21) simplifies to

ta
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p = (A 2-LA12)p +(B 2 -LB1)u p(t. o .

QED

Corollary 2.2.2

The singularly perturbed system

=A (t) + B (t )u (2.2.22)

has a linear integral manifold z = Lx + p, where p satisfies

ep = (A 22 - eLA 12)P + (B 2 - eLB 1)u (2.2.23)

Furthermore, a steady state solution of p to (2.2.23) can be solved algebraically to any order

-of e provided the input u does not contain any frequency that is of an order higher than 1/ .

* In fact,

p -

N p -A 22 B 2u + 0(E)
Proof:

To solve for the steady state solution for p. we treat both sides (2.2.23) as an asymptotic

series of e and use MAE (Matched Asymptotic Expansion).

P =Po + ep 1 + (2.2.24)

L = L o + eL 1 + (2.2.25)

U =U 0 +eu 1 + (2.2.26)
Collecting terms of e on both sides of (2.2.23),

O=A 2 p+B 2 u o

Or

J.
p= -A 1B2u o = -A-1 B2u + 0 (e). (2.2.27)

thus proving

p =--A 22B'u + 0()

Similarly for e
0

P= A 221'1 - L (APO + B 2u 1 - L °B u°

Thus.

0
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p 22 + L, - B2ul + LoBluo)

B=, + LB 1 22U [-A B2;0 1 ( -A 2A - B 2,- B 2

With the assumption that the input does not contain a frequency as high as 1/ 6, i. e.,

16 u . I < 1 , MAE is valid and we can continue to look for the steady state solution of p up to

any order of e in this manner.

QED

2.3. Geometry of Integral Manifolds and Its Relationship to Inputs

The subspace z = Lx is an integral manifold for the linear system (2.2.1) if the solution

(x (t,) Lx (t, )) lies on the subspace z=Lx for all t ER . This defines a clear picture as shown

in Figure 2-1. Each solution of the system shall remain in this invariant subspace provided it

4starts with its initial condition on the manifold. When an input is applied to (2.2.1), the man-

ifold changes to z = Lx + p , where p is related to the input u through the differential equa-

tion (2.2.15). An input usually consists of feedback, ie closed-loop control, and/or open-loop

control. As will be seen later slow manifolds are invariant towards fast feedback. So without

loss of generality, we shall consider feedback of slow modes only. Here slow modes are

understood to be the state x.

When a feedback of slow modes is applied to (2.2.1) the overall closed-loop system is

again another linear system similar to (2.2.1). Hence the resultant closed-loop system has a

* linear integral manifold for itself. The feedback has effectively shifted the original linear

integral manifold to another linear integral manifold.

Lemma 2.3.1

If the linear system (2.2.1) has a linear integral manifold z=Lx. then the resultant system

with input u=Kx will have a linear manifold z = (L + M ) x. where M is related to L and K

through

BK +4M =M(4, +B 1 K +A 1 2M) (2.3.1)

where

0 4
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.N'

A A-LA. 1 2 h = B , - L B
I .

and A, =An +A 1 2L

Proof:

First of all we note that the existence of an integral manifold for the resultant system

with input is assured by Theorem 2.2.4. When an input is applied to (2.2.1). it is in the form

X All A X B 1
21 A 2 Z .(2.3.2)

This can be transformed by Theorem 2.2.4 to

A 1 21 
(2.3.3)

with

Sz =Lx + p. (2.3.4)

When u=Kx. (2.3.3) becomes a closed-loop system.

A+BIK A 12

'I =[B K i (2.3.5)

Equation (2.3.5) is a linear system similar to (2.2.1) and has a manifold given by

p = Mx (2.3.6)

where M satisfies an equation similar to that on L in (2.2.3). i. e..

BK +AiM =M(A, +B 1 K +A2M

QED

Note that M is directly related to the feedback gain K as seen from (2.3.1). The overall

system with input u -Kx has a shifted manifold z = (L + M )x as shown in Figure 2-2.

When we have open-loop control as the input to our system (2.2.1) the resultant system has a

time-varying shifted manifold as described by the next Lemma.

Lemma 2.3.2

If the linear system (2.2.1) has a linear integral manifold z=Lx. then the resultant system

with a continuous input u-f(t) has an integral manifold. z=Lx+q , where L is as described by
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(2.2.3) and q is related to f(t) through

q = Aq + Bf (t) (2.3.7)

where

Ai = A 22 - LA 12

and B =B 2 -LB 1 .

Proof:

Again the existence of an integral manifold for our linear system with open-loop control

is guaranteed by Theorem 2.2.4.

X IAll A 121 I2

I= A A I+ I (t) (2.3.8)[' 21 2

By Theorem 2.2.4 (2.3.8) has an integral manifold

z =Lx +q

where q is related to u through an equation of the form (2.2.15).

q = Aq + Bf (t)QE

When we have both open-loop and closed-loop control as our input to the linear system

(2.2.1). we can use the superposition principle for our system and deduce the following result.

Theorem 2.3.1

If the linear system (2.2.1) has a linear integral manifold z = Lx . then there exists a

time-varying shifted manifold z = (L + M) x + q for the closed-loop system with input

u = / (t) + Kx where M and q satisfy (2.3.1) and (2.3.9), respectively.

Also

q = Aq + f (t) (2.3.9)

where

0A =A2 -(L + M)A 1 2 . a

and B =B,-(L +M)B 1 .

fl!l
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Proof:

It can be easily shown by Lemma 2.3.1. Lemma 2.3.2 and the principle of superposition.

QED

For linear time-varying systems, we have the same form of manifolds except that L and

I8. M are functions of time. When the system does not start with its initial condition on the man-

ifold. there is a deviation from the integral manifold. To investigate this situation we perform

an exact transformation on the linear system by using x. the slow mode and 1 . the deviation

--¢ from the manifold as the new state space.

Theorem 2.3.2

*The linear system

'I + AB 1  (2.3.10)

I "A 2 1 A,, B 2

is equivalent to

= A 0 P+ hU(2.3.11)

where

is the = : -Lx -p (2.3.12)

is the deviation from the integral manifold of (2.3.10).: = Lx + p . L satisfies the equation

(2.2.3). A, . A and h are as defined in Lemma 2.3.2.

Proof:

*Substitute (2.3.12) into (2.3.10) results in

x -Ax +A12 P +A127)+Biu (2.3.13)

Differentiating both sides of (2.3.12)

k 4,
6i
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A, 1x +A 22(7 1 +Lx +p)+Bu

-L[A 1 x +Ai 2 (r 1 +Lx +p)+Blu] -P

With (2.2.3) it simplifies to

-(A 22 - LA 12)7 + (A 22 - LA 12)p + (B2 - LB 1 )u -p.

Take

p= (A , 2 - LA 12)P + (B, - LB,)u . (2.3.14)

we have

71 = (A22 LA 12)-,. (2.3.15)

Combining (2.3.13)-(2.3.15). we have (2.3.11)._-.-

QED

We see from (2.3.11) that the differential equation governing 7). the deviation from the

manifold. is totally decoupled from the rest of the system. So if we assume that A is

Hurwitz. then T goes to zero asymptotically and our system will be on the invariant subspace

M, . It is in this context that we refer to the manifold M. as an attractive manifold.

Corollary 2.3.1

If .A is Hurwitz then the steady state of (2.3.11) as restricted to the manifold is

equivalent to the following system:

2 + u (2.3.16)

IP= 1 2

For singularly perturbed systems, we have a similar result.

Corollary 2.3.2

The singularly perturbed system

I All A 1 2 1 J + B1 I (2.3.17)

.Z 1A 1 A 22 Bj

is equivalent to

0 k

.0lt-_' 3 'w , g"
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",r

0 A p + B u(2.3.18)

%. where 7) is the fast deviation from the slow manifold - = z -Lx - p and L satisfies

%. a A 2 1 
+ A 22L = eL (A 11 

+ A 12L) (2.3.19)
~and

A=A,,-eLA 1 2 B= 2 ELB.i . = A-,, -- LA12 . B = B., - B

and .A, =A 1 1 +A 1 ,L

Furthermore, if A,, is Hurwitz. for eE[0. e ] 0<" << 1 (2.3.18) is equivalent to

'E.I 0 A 1 + 
(2.3.20)

It is observed from (2.3.18) that 7) is a decoupled fast subsystem. We shall hereafter refer to

it as the fast variable. Now we show that the integral manifold of the linear system (2.3.2) is

invariant with respect to the feedback of fast variable 77.

Theorem 2.3.3

Slcw manifolds are invariant towards fast feedback.

I !Proof:

V ,r Any input to our system must be of the form

u =Kx +1(t)+G7)

for some constant vector K , G and some continuous function f(t). We shall show that the

linear system with such an input.

X 11 A 12 1 J B1

A + 
(2.3.21)''21 A2 2 B

*has an integral manifold z = (L + M )x + q regardless of the choices of G. thus proving its
"'. ,.

invariance with respect to the fast feedback. The variables L. M. and q satisfy (2.2.3).(2.3.1)

,4 and (2.3.9). respectively. Due to its linearity we can use the superposition principle to study

"3,
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the o verall effect ef different inputs to the system (2.3.21). When the slow feedback control

z = Kx is applied to (2.3.2 1). the resulting system becomes

0Ix 
x = A2 :I + B 1K A 12. -

=A = (2.3.22)
z + A+B K A 2 2

: a has a linear integral manifold given by z = (L + M )x = Lx , where M satisfies (2.3.1).

Or we can say that f satisfies

-421 22 L (A 11 + A412 (2.3.23)

When in addition the fast feedback

u=G = -= G(z-Lx-q)

=G -L I - Gq

zNis also applied, we have frcni (2.3.22).

z= I + -u + BI(-G ) -

'p*I A -BGA +G I B2

xii- BIGEX1 + JGB+ (-Gq)
1 -B 2GL A 22 +B 2 G + B(2

A + B (-Gq) (2.3.24)

We nowv show that

has the same linear integral manifold: = ,x as in (2.3.22).

S+A',fL -L(A 1 +AfL)

1 22 L( 1 1 +A 1 2 L O

T II4 + T f - L (,4 + .4 12L ) = 0 
.

by (2.3.23).
7-
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This completes our proof for the case when the input is of the form of a closed-loop feedback

control. u = Kx + G T. Now for the system with input u = Kx + G i) + f (t).

=A +B(Kx +G +f) (2.3.25)

it is equivalent to

A z I+ B(f -Gq) (2.3.26)

by using (2.3.24) and the superposition principle. Finallv we show that (2.3.26) has the same

manifold z = Lx + q as (2.3.25) does.

By using Lemma 2.3.3 . (2.3.26) has an integral manifold z = Lx + q6 , where q6 satisfies the

4 ' following:

G -fqc, =(A 22  12 )qG + (B 2-LB)(f-Gq

= (A 2 2 -Lf 1 2 )qG + (B2 -EB 1 )Gq + (32 -E B 1)(f -Gq (

= (A22 - LX 12)qG + (B2 - EB1 )f (2.3.27)

By comparing (2.3.27) with (2.3.7), it is obvious that a solution to (2.3.27) is given by

qG = q , which is independent of the fast feedback gain G. Hence, (2.3.26) or (2.3.25) has the

integral manifold z = Lx + q that is independent of the fast feedback.

QED

The above theorem enables us to carry out the two-stage design. We can first stabilize

our fast subsystem and then concentrate on the slow subsystem by regarding it as subse-

quently decoupled from the fast subsystem. On the decoupled slow subsystem. we can design

our controller to achieve specific tasks. e. g., tracking etc. The eigenvalue placement problem

can be done in two steps. Desired fast eigenvalues can be obtained through fast feedback on

the fast subsystem. We then work on the slow subsystem to achieve our slow eigenvalue

assignment objective. When the system does not start on the manifold, and the fast subsystem

is not stable, this is equivalent to saving that the slow manifold is repulsive and the solution

will not come down to the slow manifold. We can stabilize our fast subsystem as shown

lI
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below.

-A + B(us + u, (2.3.28)

is equivalent to

x As A 12 A 12  X B (us + U1

P 0 A 0 p+ Bu, (2.3.29)

T 00 0 -nBu

where A, .,A andB are as defined in Lemma 2.3.2. Take uf = G so that A + G is

Hurwitz: (2.3.29) becomes

x AA12 A 12 + G x BI

P = 0 ' BG 1+ u5 . (2.3.30)

0 o0 +r i 0nG 0

When the closed-loop fast subsystem is asymptotically stable, the steady state of the slow

subsystem becomes the same as the one restricted to the manifold, i. e..

-1 =+ u ,( 2 .3 .3 1 )

all the previous results based on systems that start on the manifold can also be applied

systems that do not have their initial conditions on the manifold but have subsystems that

are stable or can somehow be stabilized through fast feedback.

N2.4. Frequency Domain Interpretation of Integral Manifolds

When our system starts on the manifold, it will "flow" along the manifold as time goes

on. The motion on the manifold is governed by a system of differential equations that is of a

lesser order than the original system. It is crucial to have the initial condition on the manifold

• so that we can consider our system as restricted to this invariant subspace as time progresses.

For the case when the initial condition is not on the manifold, a separate discussion is also

I"'V.P

118
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given in Section 2.3. For now. we shall assume that the initial condition is on the manifold.

We then investigate the equivalence of the two designs from the point of view of frequency

domain and that of the integral manifolds.

" Equivalence of the Two Designs

Theorem 2.4.1

The integral manifold design is equivalent to the frequency domain analysis.

Proof:

When we take the Laplace transform on both sides of the linear system

A l l A 12  B i
= + u ,(2.4.1)zI A 2 1 A 2 2 11+- B2  

(2.4.)we have for z

Z = (sI - A z2)- (A 21X + B 2U + z (0)) (2.4.2)

where i ER.... is an identity matrix.

When (2.4.1) is on the manifold
C,i

z = Lx + p. (2.4.3)
jt , we have

X =(Al1 +Al 2L)x +A tjP +B u (2.4.4)

p = (A -2 - LA 12 )P + (B2 - LB 1 )u (2.4.5)

z (0) = Lx (0) + p (0). (2.4.6)

We now shcw that the integral manifold in the frequency domain is the same as (2.4.2).

Rewrite (2.4.5) as

p =A22P +B 2u -L(A 2 p +Blu). (2.4.7)

Taking the Laplace transform on (2.4.7), we have

P = (si - A , 2)-'[B,U - L (A 12 P + BU) + p (0)] (2.4.8)

Now we take the Laplace transform on (2.4.4)

y!
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(s -A 1 1 -A 12L)X -x(O)=Al 2P + BlU . (2.4.9)

Multiplying both sides by L , we have

[sL -L (A 1 1 
+ A 1 2L )]X -Lx (0) = L (A 1 2P + B U) . (2.4.10)

Using the identity that L satisfies. i. e..

L (A 1 1 + A 
12L)= A , 1 

+ A , 2L
(2.-4 10) beccomese~

RsI-A 22 )L - A 2 1]X - Lx (0) = L (A 1 2P + B 1U) (2.4.11)

Substituting (2.4.11) into (2.4.8) we have

P (sI - A,,)-'B,U - [(sI - A 22 )L -A, 1 ]X + Lx (0) + p(O)

(s! - A ,)-'[B2 U +A 2 IX +:(0))- LX - (2.4.12)

Take Laplace transform on our manifold expression (2.4.3) and use (2.4.12)

Z =LX +P

=LX + (si-A ,,)-[BU + A 2 1X + z (0)] - LX

(sf - A 2) -[B 2U + A 2IX + z (0)] -

which is the same expression as (2.4.2).

3 QED

The above theorem justifies the use of the manifold approach in linear time-invariant

systems. Note that we can design our controller from the point of view of the integral mani-

fold for those nonlinear systems which are not Laplace transformable and thus renders the

frequency domain analysis impossible. The integral manifold design is especially powerful

when we are dealing with singularly perturbed systems. A controller in the form of an

asymptotic series of e (the perturbation parameter) can be designed based on this methodology.

This will be illustrated in the subsequent Sections.

2.5. Eigenvalue Placement Problem

We consider the eigenvalue assignment problem for linear time-invariant systems that

contain slow and fast mode eigenvalues. Here slow mode eigenvalues mean eigenvalues with
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smaller magnitude as compared relatively with the fast ones or the larger ones of the same

system matrix. As will be shown later, this can be done in two stages. First of all, slow mode

eigenvalues are brought to the desired ones through feedback of the slow variables. The fast

mode assignment is accomplished by applying a fast feedback so that the resultant fast sub-

system possesses the desired fast mode eigenvalues. The fast variable is the deviation from the

slow manifold which is characterized by the slow eigenspace of the desired slow mode eigen-

values.

Recall from Lemma 2.2.2 that if the linear system

,- 2-2:-t = A (2.5.1)

* has a linear integral manifold z = Lx then L is given by

L = v 2 VI
1  (2.5.2)

where v, V, is the slow eigenspace of (2.5.1).
% 

I

When we want our system (2.5.1) to possess the desired slow mode eigenvalues. i. e.,

X,, k through feedback control. the resultant slow eigenspace becomes

, -v I-d  (2.5.3)

.3 Apparently the resultant system with feedback has a new shifted manifold given byiid
.,Ld (L +M)=v,d vl1 - (2.5.4)

where M satisfies (2.3.1) in Lemma 2.3.1. Therefore. assigning slow mode eigenvalues for the

. linear time-invariant system is equivalent to requiring our closed-loop system to possess the

desired slow manifold ,= x . With Assumptions 2.2.1 and 2.2.2 we shall propose a

methodology for our eigenvalue assignment problem.

When our linear system is transformed to an equivalent system using x and T) (the devia-

tion from the slow manifold = Lx ) as the state variables, the system matrix will be in
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upper block triangular form. It is proved in Theorem 2.3.3 that slow manifolds are invariant

towards fast feedbacks. In other words, the fast eigenspace (fast manifold) 77 is orthogonal to

the slow eigenspace (slow manifold characterized by z = Lx ) . Hence, when we adopt the

slow eigenspace and the fast eigenspace as our coordinates for the linear system we should

have a block diagonal matrix as our system matrix. We will name the new coordinates as

p and 'n . respectively. It is due to the block diagonal system matrix that we can have the

two-stage eigenvalue assignment design.

Recall

= A + 1 (2.5.5)

is equivalent to

% I A t 1 +ri (2.5.6)

where -

A, =A 1 1 +A 1
2L .A, =A, 2 -LA 12

B = - LB . = z -Lx"

here. L satisfies (2.2.3). To achieve block diagonalization we have to use p. the invariant sub-

space characterized by Z = LX . as our new coordinate . The state variable p is obtained by

removing the fast eigenspace component in x,

p = x - H 71. (2.5.7)

where H satisfies

* (A 1 1 +Al 2L)H +A 12 
= H(A 2 2 -LA, 2 . (2.5.8)

Then (2.5.6) becomes

-0]= JA, 0 10 p + III IB "  (2.5.9)

0 A T

Equation (2.5.9) without input is in block-diagonal form. When the system starts with its

initial condition on the eigenspace spanned by p . its motion will be governed by
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p,=A, p

and will remain in it as time goes on. This is exactly the description of motion on the slow

manifold of the system. Hence. the slow manifold is the invariant subspace spanned by the

* slow eigenspace of the relevant system matrix . The same argument applies to 7q , the fast

eigenspace, and we shall name it as the fast manifold for the sake of completeness. By assum-

ing the complete controllability of (2.5.5). we also have the complete controllability of the

slow and the fast subsystems in (2.5.9). The complete controllability of the slow subsystem

in turn ensures that we can choose K so that when

u =Kp+u 2

is applied to the linear system. we have

=lA1 +(B 1 -Hi)K 0 p+ uBI-HB (2.5.10)
4 O BK A/ 71 B

where

X, A, + +(B - H B )K  X, 1 , li -,n "(2.5.11)

X,, I are the desired slow mode eigenvalues.

Since our slow eigenspace has been changed as a result of change of slow eigenvalues. we have

a new shifted slow manifold or slow eigenspace characterized by the submatrix

A, +(B 1 -HB)K

in (2.5.10).

Since we have introduced a slow feedback into the fast subsystem. the fast eigenspace is also

changed correspondingly. We shall name the new coordinate spanned by the new fast eigen-

4 space as c. ,where

._ = - Np. (2.5.12)

and N satisfies

9 K + A t N = N [A, +(B -Hi)K] (2.5.13)

Note = Np is a slow manifold within the system (2.5. 10) without input u

4 
S

LO
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With (2.5.12)-(2.5.13), we have from (2.5.10)

S A , + (B , -H A )K 0 1I I+I B , -H iBJ 2( -. 4
&r = 0 A1  [o + -M(Bt-HB) u2  (2.5.14)

We still have the complete controllability of the slow and fast subsystem pairs in (2.5.14)

since controllability is invariant to state feedback. To achieve the fast eigenvalue placement

objective, we pick G so that

X] (A!f + G[h - M(B AH )]} Xf 1:, lj < . (2.5.15)

where { X, are the desired fast mode eigenvalues. Overall we have achieved the eigenvalue

assignment in two stages by applying a composite control that consists of slow and fast feed-

backs.

u =Kp+ Go, (2.5.16)

The input can also be expressed in terms of the original state variables x and z.

u =Kp+Go'=Kp+G('-Np)

=(K-GN)p+GV=(K-GN)(x -H'))+G7

= (K - GN )x + (G - (K - GN )H I- §:

=(K -GN)x +[G -(K -GN)H](- -Lx)

= (K - GN) - [G - (K - GN )H ILx + [G - (K - GN )H ]z (2.5.17)

We now investigate how the slow manifold of the resultant system with input (2.5.16) is

characterized in ( x ,z )T state space. From (2.5.12) when the system is on the slow mani-

fold

"1 = Np, (2.5.18)

* eliminating p between (2.5.18) and (2.5.7) we have

I + NH )-Nx. (2.5.19)

Substituting this into z = Lx + T) we have

z =Lx +(I +NH)-Nx =[L +(I +NH)-'N]x . (2.5.20) _

Note that N depends on K but not on G. This again indicates that the shifted linear integral

0
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manifold is invariant towards the fast feedback. Comparing (2.5.20) with (2.3.1) in Lemma

2.3.1 where the shifted manifold is described by Lemma 2.3.1 as

z =(L +M)x

we have

M = (I + NHY)'N

From the above discussion we have proved the following theorem.

Theorem 2.5.1

By assuming the complete controllability of the ( A ,B )pair in
tx X

=A + Bu

A composite control of the form

u = ax + Oz

will achieve the eigenvalue placement objective, where

3 =G -(K - GN)H

o=K -GN - OL

The constants K and G are chosen as in (2.5.11) and (2.5.15). The variables L. H and N satisfy

(2.2.3), (2.5.8) and (2.5.13). respectively.

For singularly perturbed systems, we have similar expressions. Furthermore. L. H and

N can be approximated by some explicit expressions as follows.

Theorem 2.5.2

To assign i X ,. !} as the desired eigenvalues to the linear system

-A + Bu (2.5.21)

where X , } = I are the desired distinct slow eigenvalues. and { A } =

X, .Il A.,,,, are the desired distinct fast eigenvalues. Assume the full controllability of the

fast and slow subsystem pairs. ( A,, . B, ) and ( A 22 . ) . where

i2...
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A 0 =AII-A 1 2 A2A, 1 and BO~= B, -A22A 1 2B1

a feedback control of the form

u =Kx +G(-- -Ldx)=(K -GLd)x +Gz (2.5.22)

with K firstly chosen so that

and then G picked so that X( 0 +BK j~(..3

will result in X(-2BG=~ ; 1<-,n(..4

Xc=A(A+BK)+O()=X +0(E) 1,<in (2.5.25)

x C = X (A,, + BG +O0(,E))/e i n+ j 1,<j j -< (2.5.26)

*where c are the eigenvalues of the resultant closed-loop system. Also, the Ld in (2.5.22)

satisfies

A 2 1 +B 2 K +A 2 2Ld =eLd(AII+BIK +A1 2 Ld). (2.5.27)
Proof:

Apply a composite control of the form

U =u, +Uf = Kx + uf (2.5.28)

to (2.5.21) (2.5.21) then becomes4

J_ = AIx I+ B u., u,(2.5.29)

or

* .fx 

1 1 + B 1 K A 1 21
x I + Bu1  (2.5,30)

Jez A 2 1 +B 2 A 2 2 j Z

S With the assumption that A 22 is nonsingular, (2.5.30) has a manifold

z =LdX

where L. satisfies (2.5.27) by Lemma 2.2.1 and

Ld = Ld + O(e) =A _'(A ,j + B,K) (2.5.31)

Take T) as the deviation of z from the slow manifold z L. Lx .e..
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We have from (25.30). 7=z -L.X

x I s A 121 IX + B 1(2.5.3 2)
ej] 1 l H7, + BJ

where

Whe a ll+ +Al2Ld , =A 2 -eLdAI 2 andB B, - eLdB .

iapplied to (2.5.32). we have GI

The above svstem matrix differs by 0 (e) from its approximate version

A0 +B 0 K A 12 + BIG1
I (2.5.33)

0 A 22 +BG 71
i. e.,

S A 0 +BK +0(e) and

'jK +jG =A 22 +B 2G +0(e).

By a standard theorem in singular perturbation, the corresponding eigenvalues also differ by

0 (e) from its approximate ones [13], i. e..

X A s KB)=X(A 2+B 2 )+(e). 1-<j-< m

Since (2.5.33) is in bloc k-triangu lar form and with the controllability assumption we can

4 choose G and K so that (2.5.23) and (2.5.24) are accomplished.

QED

The closed-loop system has a shifted slow manifold

z =Ldx = (L + M)x (2.5.34)

where L is governed by an equation related to the A,, entries of the open-loop systems. In

I'l.9C I
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other words. L is inherently related to the eigenspace or the eigenvalues of the original sys-

tem. Altering the eigenvalues would subsequently result in a new eigenspace, which in turn

shifts our system to a new manifold (2.5.34). The amount of work required to achieve this

through slow feedback is directly related to M. the amount of manifold shifted from the origi-

nal one. As we can see from (2.3.1), M is a function of both L. an inherent property of the

open-loop system. and K. the amount of feedback applied. We now study a singularly per-

turbed system and give an implementation for the eigenvalue sensitivity problem.

Lemma 2.5.1

The singularly perturbed system

xI '1i A12I B j B1

* = + (2.5.35)
EZ A 21 A 2 2 B

-e with input u = Kx has a linear integral manifold

z = Lx (2.5.36)

where f satisfies

A1+B-,K + A ,L = eL(A 1 + B lK + A 1 2 f)

L =-- L + eE 1 + 0 (e)
-- i

L, = -A., (A, 1 + B 2 K 0 ) ; f, = A221 [-,E(A 11 + B 1 Ko + A 12f 0 ) - BK]..

With 71 as the deviation from the slow manifold (2.5.36). (2.5.35) is equivalent to

= rk (2.5.37)

0Al K 7

A S= Al + BlK +A 12T.  .K = A22- eLA 12

Furthermore. if A is Hurwitz for 6 E(O ,e'] where 0 < " << . (2.5.37) will be on the

manifold and is equivalent to

x =A x (2.5.38)

Proof:

V.
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Similar to the proof on Theorem 2.5.2.

Note in Lemma 2.5.1. if the fast subsystem on p is not stable , i. e.. the manifold is repul-

sire. we can stabilize it by applying an appropriate fast feedback and thus rendering the slow

manifold attractive. We are then justified to use (2.5.38). To investigate the eigenvalue sensi-

tivity problem, we need the following Lemma [14].

Lemma 2.5.2

For the linear system

x = A(E)x

* we have the following formula regarding the eigenvalue sensitivity with respect to the param-

eter .

, .. A)v ,w>_
<(-) W *w>

___ t e (2.5.39)

where v (E) and w' (e) are the respective eigenvectors of A (e) A "(e) associated with the

eigenvalue X,

Proof:

Take V! (E) as the eigenvector of A (E) associated with the eigenvalue X, (6) , we have

A (Ev' (E) = X EV E

Taking partial derivatives with respect to the parameter E on both Sides of the above equation.

+V + A - v + x . (2.5.40)

Left multiply with w i on each terms of (2.5.40).

-- , - (w')4 A  =(w ) -v + (w )Xi (2.5.41)

Observe that since

A w= Xw

so we have

4 S
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w, A =Xw,

and also due to .he fact that X is a scalar. (2.5.41) reduces to

i a0

By dividing both sides by (w )T v' we have (2.5.39).

QED

We are now in the position to propose a design for the eigenvalue placement problem of

singularly perturbed systems. The method here is to add a corrective term as part of the feed-

back to the singularly perturbed system, so that the eigenvalues assigned do not differ more

2'" than 0 (F2 ) from the desired one.

* .~ Theorem 2.5.3

For the single input system.

x' AI (A 11 A 12 x lB1

6J A21 '22)

,, % if K,) is the design parameter for the nominal or reduced system.
,.9-.

* P.x =Ax + bu

where

A,, = A 1 - A 12A 22A 21 B 0 = B 1 - A 12A B 2

such that

X-(AO + B7 KO) = .I , i K (n

and A, + B,)K, has n linearly independent eigenvectors that span R" space.

a feedback of the form

- . " u -- (K, + 6K 1)x

will place the eigenvalues of the resultant closed-loop system at

X, = A + 0 (E') (2.5.42)

* where A,, .1 i < n . are the desired eigenvalues. -A

- 0I
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K 1 = PAf (2.5.43)
with

where v o are the eigenvectors of A o + BoK 0 and

<w A 1 v > <w". A 1 v >

stnd<sW ,dt. BO> <w' . B0 >

where <...> stands for dot product. The vectors w o , 1 < i < n , are the eigenvectors of

(A,- + B,,,K ) and

A 1 =A 12(A - 1 ) 2(A + B Ko) (A o + BoK,) .

We also assume that < w o ,B 0 > ;-0 , li n 

' 4. Proof:

Bv Lemma 2.5.1 our singularly perturbed system is equivalent to

K

.if the fast subsystem is stable by itself or through fast feedback somehow.

*r Note that

* A/(e) =A 11 + B IK (e) + A 12 ()

+KA + (E 2 )A + eA

where

d = A 11 + B 1K() - A 12A 22(A 21+ B 2K)
(A 1 . - A 12A 22 A 21) + (B 1 - A 12- 2 B)K

' ".',= A o, + B oK o

and

F
A I= B 1K I + A 1 2Lf1

*BK+A 1 2 A - IL (A 0 + B 0) - A 12A ,B,K 1

I8
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=(B 1 -A A 2, B2 )K 1 - .4 12(A -2 )2(A , + B K)(A + B0 K o )

=BK -A , A2 )2(A,1 + B,K,)(AO + BoK o ) Li

=B0K 1 -A.

Applying Lemma 2.5.2.

(~~)E~o = O ( -)If_ __ __ = 0 _____>

a0 w 0 ae A 1 Vo > (2.5.44)
h(- ), =o =  o W, < ,; V, > < W .V >

<w o' .(BOK 1 -A 1)viO > =0. 1<i <n (2.5.45)

or

<w, .BK 1 v> <w Alv>. > Wir v

* or

<w' .A vo>
K 1 VO Iin

<W' .BO> f

provided <w o .B o > O .i.e.,
[ ] <W ,A 1v 1> <w0 .A jVo>

K, vo .. 0 ..... (2.5.46)< Bo> <wo. B,>

From (2.5.46). we have (2.5.43). By (2.5.44) and (2.5.45) we have (2.5.42).

QED
S

In the proof of the above theorem, we note that if B 0 is nonsingular, we can take

1%B I B0 'A I

to achieve the same task. One merit of this kind of corrective measure is that the feedback

controller based on the nominal model can still be used. Only an additional term is added to

the controller to compensate for the effect of parasitics that is inherent in the singularly per-

turbed system.* _I

+.



37

2.6. Application of Slow Manifold to Tracking Problems

We shall investigate the tracking problem of a singularly perturbed system in which the

slow part is required to track a prescribed trajectory. When the fast part, i. e., the deviation

from the manifold, is asymptotically stable the deviation goes to zero at the rate of O( I/e ).

We can then consider the system as restricted to the slow manifold and thus simplify our

design. Tracking of this type arises in many situations. The tracking problem of the flexible

link manipulator is just one of such.

By following (2.3.29)-(2.3.31) in Section 2.3,

[~ A ll A 2  B ,1  
(2 . .1LIz I A2  I + J (.61

, A 21 A 22 B

is equivalent to

-2 i p + u (2.6.2)

where A, . A and B are as defined, and

A,(e) =A,o + eA, + 0 ( 2 )2

=A 1 1 +A 12Lo + eA 12L 1 +0(6 2 )

S= 0 
+ 6A 12 L + 0 (e2 )

and

- = ,L 0(, 2)

= A 22+ E(-L 0A 12) + 0 (e2)

•=A22 + eA 2 I A 21B + O (e2).

It is assumed that the fast variable. 'v , is available for feedback control. When the fast sub-

system of 7) is stable by itself or somehow through the fast feedback, = G n . the system

will be on the manifold so (2.6.2) is equivalent to

O' -Rl~l 1
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= A 1 B1  (2.6.3)

Suppose the slow variable is required to track a given trajectory Xd (t), which is assumed to

be infinitely differentiable. By setting

-- 1 x =v

with

v = x, -O(x xd) (2.6.4)

then

=-oie • (2.6.5)

where
e (t) = x (t )- (t)

is the error between the output of the system and that of the desired trajectory at time t.

With i > 0, we have (2.6.5) as a stable system and x will track Xd (t) as desired.

We can solve p up to any order of E algebraically.

Equating the coefficient of 60 in the above equation.

So F- A0 opo+Beuo

p - 0 oUo = -A '.Bu

* Similarly,

E io A OP1 + Apo+' 0 u1 + &0,

So

0P 1 =A22 (PO- A 1p 0 -B Ou1 -BIu 0

- -A22 (A 2 B 2 0 + LOA 12 A 22 B uo+ 2 u 1 -LoB lu )

-A 2"1(A -'B 2uo  L oB 2uo + B 2u) pluu . o"

In general.

)!
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or

p, A [r , + (A r -, + )
orr

=-1

=A 2 [p _1-B 2 Ur + £L i - (A12pri + BlUri)]

whence it can be shown that

Pr =p,( 0 .. Ur Ur . . . . . ,.- 1)- (2.6.6)

From (2.6.3), the slow variable is governed by

x =A~x +Ap +B 1 u
I|

=(Aox + A 12Po + Blu) ) + e(A lx +Ap, + Bl u l) + 0(E 2 )

=[Aox +(B 1 -A 12A_'A 2 1)Uo] + e(A 1 2L x +A 1 2p + B1u 1 )

+ .. +E(A 1 2LrX +A 12r +B lUr)+ . (2.6.7)

where

A 0 
= A l l + A 12L 0 

= A,, - A 41 A

- )

and B 0 
= B1 -A 12A 2 ,B,.

We should pick u, • so that in the nominal model, i. e., the one obtained by setting the parasi-

tics e =0 .

A ox + Bouo = v , (2.6.8)

i. e..

uo=Bo'(v -Aox)=uo(X ,Xd .xd) (2.6.9)

and u, so that coefficient of er , 1 <r <o , in (2.6.7) vanish. Here we assume B 0 to be non-
1p

singular. In this manner the resultant closed-loop system becomes

x =Aox + Bou = v (2.6.10)

Or

ax=v.
and hence (2.6.5). The tracking objective is thus achieved. We now show how the derivatives
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of u, are expressed in terms of x. the state of the system, x (t ) and the higher derivatives of

Xi •

From (2.6.8) and (2.6.4)

uo = B o l(v -Aox)

IB O71 (Xd - (X X d) - A x )
= Bo['d - QXd --(A o + oe)x . (2.6.11)

Differentiating both sides of (2.6.11) and use the fact that when an appropriate control of the

form

U =U 0 +Eu 1  +

is applied to the system on the manifold we have (2.6.10).

UO-=BO[ xx (AO+aI)v]
= B oli -a --(A + aI)x, aOKx - ))]

U = I o X d , x d , )

In a similar manner, we have

Ur -1 =  Ur -1 (X  
IXd , Xd . x 1 r (2.6.12)

Hence, from (2.6.6), (2.6.9) and (2.6.12) we have

(r +1)
Pr = Pr(X - Xd "Xd .... Xd r r 0.

Therefore, we should design our control Ur . 1 <r <Co , based on
(r + 1))

U r  = U , (X P r ) 
"
r (X - X d . d ... X d

That is to say, to implement the control we need the state of the system , x. the desired trajec-

tory, xd (t) . and its higher derivatives which are assumed to be known a priori. When E-0.0 ,

(2.6.1) reduces to

z = -A 221 (A 21x +B 2u)

X = A lx +A 1 2z +Bu

= (A 11 - A 12A 1A 21 )x + (B I - A 12A -1 B 2 )u
- -

=A 4x +Bou (2.6.13)

Thus, for our design

6V
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u, is the required control for the tracking problem based on the unperturbed or reduced model

(2.6.13). and

ac = a I + m u w +

is the corrective control to be added to compensate for the effect of parasitics present in the

system. The parasitics in the case of a flexible link manipulator will be the flexibility of the

robot arm. Note that by appending a corrective feedback control to the real system the singu-

larly perturbed system will behave, to a naive user, as if it is parasitics free. Figure 2-3 shows

the block diagram of the controller which achieves 0 (2) tracking accuracy. This completes

our discussion on the tracking problem using the slow manifold concept.

40
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3. APPLICATION OF INTEGRAL MANIFOLD TO FLEXIBLE LINK MANIPULATORS

3.1. Introduction

There are two main reasons why we want to investigate the control problems of flexible

manipulators. First. control algorithms which assume a rigid model for the manipulator are

not satisfactory when applied to real robots where perfect rigidity is not a good assumption.

Second. most robots are built to be mechanically stiff simply because of the difficulty of con-

trolling the flexible members and not because rigidity is itself inherently attractive. A great

deal of research has been devoted to this issue in recent years[6. 15-18].

In this chapter, the flexibility in flexible manipulators is interpreted and shown to be the

cause of phase delay in its performance. A phase-lead prefilter is appended to eliminate the

error due to flexibility. A time domain analysis using integral manifolds gives an analogous

result and provides a simple approximate corrective scheme to the control problems of the

flexible link robot.

3.2. Modeling of a Flexible Single Link Manipulator

To demonstrate our principle, we designed a feedback control which, when being applied

to the flexible manipulator, results in a performance that is arbitrarily close to the rigid one.

In particular. we illustrate our idea by designing a controller that gives the flexible manipula-

2 1
tor a performance 0 (e ) close to the rigid one. The small constant e = 0 (-) , where k is the

k

flexibility constant. First. derive an approximate model of a single flexible beam as a linearized

singularly perturbed system. For convenience we restrict our discussion to a single planar

flexible link as shown in Figure 3-1. We assume the mass of the link is uniformly distributed

and that gravity acts normal to the plane of motion and thus can be ignored subsequently. We

model the flexible planar link as an interconnection of n rigid links, each with length 1i and

mass m, . as shown in Figure 3-2. It is assumed that the links are connected by linear torsional

springs, each with stiffness k. and we assume that k is large. The flexible manipulator is thus
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represented as a planar n link mechanism. As a consequence. we establish a coordinate system

at the base and at each link as shown in Figure 3-2. Let q q 2 .. . q, be the corresponding

joint angles measured with respect to these coordinate frames, and let Ii be the moment of

inertia of the i th link about the z, axis which is normal to the plane of motion of the manipu-

lator. For simplicity, we take I, =1. for all i = 1 ..... n . Then the kinetic energy of the j

th link is given by[19

1 1
T

K, = -i 1 Vf., + 1(3.2.1)
2 21

where w , the angular velocity of the j th joint, is given by

(.oU =(q + q 2 +. ..... +q), (3.2.2)

and q 1 is understood to be the angular velocity of the first joint, etc.

By following the standard derivation of the kinematic motion of any point on the manipulator

with rotational joints[19], the velocity of the center of mass of the j th link, Vcj , is given by

V,:J = JJ q

where

IT1

q q' [q*2 .. . q,, and J, J,

ip . the Jacobian of the center of mass of the j th link with respect to the (i-) th joint is

given by

=0 . j <i -<n.

The position of the ith joint. 1 i < n - 1 .is

, x[lcos q I+12 cos(q I + q -)...... +1i cos (q 1 + q 2 +. +

+ llsinqI+12sin(qI+q
2 )+ + isin(q1 +q 2 + +qi

The position of the center of the mass of the j th link is

0 ., . cosqI . ..... =L o Cos(q 1  + q 2 . .......... + qj 1) + 1  cO s(q I+ q22 + + q)

2),nS
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+ ' v [,sin q ,+ .... + l - 1 sin (q I+ q + . ..... + q -1 ) +1 lC sin (q I+ q 2 + ......

From a symmetry consideration, we take

i 1 = L/n (3.2.3.a)

rn m = M /n (3.2.3.b)

i= 1/2 (3.2.3.c)

I I=. = m1 2 /12. (3.2.3.d)

With L being the length of the undeflected beam. M being the mass of the whole beam. and 1.,

being the distance of the center of mass of the j th link from the j th joint. By (3.2.1)- (3.2.3)

the total kinetic energy K of the manipulator is then the sum of the individual kinetic energies

m I n

2 j 2 =.

m n

M . T(r J r ~ '

- q )q +,, - +q , (- E 

-J"2 

j =1

1
- q .M/-)+ 

IET J 1

-- q M(q)q,
2

2 ':
where

E, 

0 
O(n 

- X 
n -

0

1 is a square j X j matrix with all entries being unity.
i~ Xi

By restricting our study to slightly flexible manipulators, we have a small deflection along the

link and this indicates that

(q 2 aq 3 m q f wOe )

where 6 is a small positive number.

0 As a matter of fact, with some trigonometric and algebraic simplification,
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M(q ..... q, ) = M(q 2 . q3 q,, ) = M +0( 2 ) (3.2.4)

when we expand it. This means that M(q) is only a function of fast variables, (q 2 . q, ) ,

and can further be approximated by a constant matrix M, which is positive definite and svm-

metric. Since we are mainly interested in designing corrective feedback control up to 0e( 2 )

accuracy. it is thus acceptable to take M, instead of M(q) in our derivation that follows. The

potential energy P of the manipulator in this case is the sum of the elastic spring potentials

P = -k - ( q + +.. . . + ' ) P ( q )

2
where k is the torsional spring constant and q, are the relevant angular displacements at each

fictitious joints. Euler-Lagrange equations are then of the form

iLKL =K -P =K(O)-P(q)

where K (q) is a valid approximation of thetoakineticenerg too 0: ( 2 accuracy.

6L- 4 d 8L W

- kqJ 2 j n 

=0 . j=l.

Assuming that there is a viscous damping term - d, qi at the joints, the system equation that

describes the flexible beam can be written as

0

40 0
MWq)~i + k q +dq= -U (3.2.5)

0 0

4 By the fact that M is nonsingular and can be approximated by a constant matrix as in (3.2.4). P

r2
* '> (3.2.5) is equivalent to the following with 0 (e2 ) approximation.

.1 = Dq! + A kq + Bu (3.2.6)

o where D. A. B are all constant matrices

N 1I
V 1
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By scaling (q ..... qq = : ...... :, z with = /k. we have

q = (q 1....... = (x Zz ). where x = q . Without loss of generality, we take E = e .

Equation (3.2.6) becomes

( "] [D 11 D 121 IJ I +1. j z +1 1B I lID z + . (3.2.7)

:- [D 2 1 D22  Ez B,

The rigid or reduced model can be deduced from (3.2.7) by setting e = 0. This is

equivalent to having an infinitely stiff beam which is also the undeflected rigid beam.

Setting e = 0 gives

=-A "' (D 2 1x +B 2U).

Substitute this into (3.2.5) and simplify

S- (D,, - A A 'D 2 1 )X + (B 1 -A A 'B2 )u

Or

x =ArX +Bu. (3.2.8)

(3.2.8) can be compared with the system equation from the rigid beam derivation. They are

found to be identical.

A more realistic modeling of flexible link manipulators can be obtained by using the

modal analysis. A flexible link manipulator with a concentrated mass is shown in Figure 3-3.

The deflection along the flexible link, 8(x . t ) . is a function of both time and position along

the link. 0 -< x -< I . where 1 is the length of the undeflected link. The deflection 8(x . t ) is

governed by the beam equation with the boundary conditions where the beam is clamped at

one end and free at the other end.

O'8 028
El - a (3.2.9)

4' where the constants are, respectively,

E: Young's Modulus.
*

I: beam area inertia.

p: density.

r P
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With the assumed mode method, 8(x t ) can be represented as an infinite series of separ-

able modes

8(x ,t) t 7 (x ,(x) (3.2.10)
~i=1
where 0, (t) -. 0 as i -. oo (201. For a realistic representation of a slightly flexible beam. a

good approximation can be obtained by truncating (3.2.10) after the first few terms.

The functions 7r, (x) are the eigenfunctions of the PDE (3.2.9) and satisfy

a7r 2

* El = oP 7r (x)
4ax

We treat 0, as part of the generalized coordinate q = (0 , OY , where 0 is the joint angle of the

;!_ relevant link. Through Lagragian formulation the flexible link manipulator can be modeled by

the following state equations[21 ]:

M (q)q + k q +dq Qu (3.2.11)

where q = (0 , 4) and Q is a constant vector. The dq term accounts for damping. Constant k

is a normalized stiffness constant that arises as a result of the presence of link flexibility and is

related to the payload mass, length, cross-section area, cross-area inertia, density, and the

Young's modulus of the beam. A quick comparison between (3.2.5) and (3.2.11) reveals the

fact that both ways of modeling flexible link manipulators lead to two equivalent system

representations, though there is no one-one correspondence of the state variables between

,~ them. For a single flexible beam with no payload that has its motion restricted to a horizontal

-! plane [18]. it can be verified that M(q) is a function of fast variables (deflection variables) Ok

alone and can further be approximated by a constant matrix as in (3.2.4). This again justifies

our way of modeling the flexible beam as n sublinks each connected to the othe: through a stiff

spring except at the base where it is hinged upon a rigid joint. Neglecting the damping effect.

Judd and Falkenburg used the Denavit-Hartenberg 4-parameter representation for modeling

the flexible beam and came up with a set of system equations identical to (3.2.11) with the

% '" !
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damping term omitted [221.

3.3. Existence of Integral Manifold in Flexible Link Robot System 77

The flexible manipulator system (3.2.7) can be rewritten as the following singularly per- ,

turbed linear system

X 0 10 0 X 0

_2 Dil A A D1 2 X2 + b (3.3.1)

00 z 0 1 0
0 D, 1 A 2 /D 2 . . b2P~. 2- A 2 Z2,*

%whereA E x Ix ,x2 x ,zIz andz 2 
= Z-;

This can be rewritten in a more compact form as

y All A 12 1X + JB1 j
= A 2  + u (3.3.2)

where X =(x ,x..Z ( Z 2) andA j and Bi correspond to appropriate entries in

(3.3.1).

Due to the nonsingularity of M(q), A 2 is nonsingular and hence

-'-A D1 2 A- 2 333
A 22 = DA 2 1 0 (3.3.3)

Bv (3.3.3) the existence of a conditionally attractive manifold for (3.3.2) is assured [11].

From Corollary 2.2.1 of Chapter 2. the integral manifold is of the form

Z =LX +P

whereX = (x ,x,), . Z = (z, z2) andLisa2X2constantmatrix.

Bv Corollary 2.2.1, L satisfies the following equation:

0 0L L 0 + J1
I: 0  [4 ' L =L 1I I D+[ IL}

*1 '2 #D 2 2  0 tI JAI A 1 2

Solving

0
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L 0 + -I(A
2 )

L - A -D, A, +0D, I)
0. -A2i 1 (D21  -Al.42 D, 1 )

and P satisfies

AP- AP + But

withA =.A 2 2 -ALA 12 andB = B 2 -IuLBI.

- For our system to start on manifold Z = LX + P , it is necessary and sufficient that

Z (t 0 ) = LX(t,) + P(t o) = LX(t 0 ) (3.3.4)

since P(t,,) = 0.

.. We recall that (X . Z ) represents the positions and velocities of the joints and deflections.

respectively. One of the initial conditions that would satisfy (3.3.4) is the one where the robot

q starts from rest with undeflected links in the "zero" position. In this case, we have

(X (t) Z (t,))) = 0 and (3.3.4) is trivially satisfied.

" . 3.4. Flexibility as a Cause for Phase Delay

* It is intuitive that for a robot with perfect rigidity the links and the end-effector will
k4 ,

, move accordingly when the motor starts running as a result of the applied input torque. How-

ever. for a robot with flexibility in either links or joints, the end-effector does not move simul-

*. - taneouslv with the motor. Furthermore. the trajectory of the robot arm does not follow the

, expected one exactly. This phenomenon becomes more noticeable with the increase of input

frequency that in turn excites the inherent flexible modes in the robot. We shall interpret this

as a phase delay due to the flexibility in the manipulators.

Referring to the flexible beam in Figure 3-3. the position of the mass m at the tip of the

beam is described by

y =IO(t) +8(1 .t)

%4 xhere 1 0 is the arc traversed bv the tip of the undeflected beam from the reference frame and

4 8(1 t ) is the deflection at the tip of the beam.

Bv (3.2.10). (3.3.1) and the fact that we take Z1 as the scaled version of the deflection vari-

NI
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ables i. e., ez .we have 50

=zO(t) + 7r; (I)Oj (t)
i =2

Ix 1 + e (7r2(l) 7r(t ) 7•• r, (1)) Z

SinceX =(x 1 .x 2 )T .Z = (Zl.Z2). we have

y =COX + EC 1,Z (3.4.1)

COX + A 2 C1 Z

whereCo=(1 .0).C,= (7r2 (l) '1~J).1O, .0) .E= A

Thus, we have the movement of the mass m at the tip of the flexible beam governed by a linear

time-invariant system (3.3.2) with linear output (3.4.1).

The movement of the mass m on a rigid beam is described by the following system equa-

tions:

X =AOX +B o u "  (3.4.2)

y =COX (3.4.3)

Ao = Al 1 -Al 2 A2A 21 .Bo = B 1 -A 2A2B 2

where (3.4.2) and (3.4.3) are obtained by setting A = 0 in (3.3.2) and (3.4.1) respectively.

The frequency domain representation of (3.4.2)-(3.4.3) is given by
91

Y Co ( s - A o)-lBoU =T C OI(sl -A,, + A12A -1A - 1 B OU  (3.4.4)

The flexible beam system (3.3.2) as restricted to the manifold Z = LX + P is

X = (A 1 1 
+ A 1 2L)X + A 12P +Bju (3.4.5)

j. ip = ' + Bu , (3.4.6)

* The frequency domain representation of the movement of mass m on the flexible beam

described by (3.4.5)-(3.4.6) is given by

Y(s) CoX(s) + A2CI(LX(s ) + P(s))

=C,(sl -A 11 -A 1 2L )(B +AI 2 isl (AS' U
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+ -U2CI(LC,(sl -AH -A1 2L'(B +A 2 (s - ' )+(#91 + -T )LJ

Note that

(psi- '= + Us + 0 ( 2 )

So

Y =Co(sI -A )-AB2L)-'(BI-AI2(1 + )U +O(p2) (3.4.7)

where, as a reminder. A =A2 + 0 (). =B 2 + 0(/1) . L = -A A 2 1 +0 ()

4 As p - 0 the flexible beam reduces to a rigid beam and consequently (3.4.7) becomes that of

(3.4.4). One can check this easily by setting p = 0 in (3.4.7). Comparing (3.4.7) with (3.4.4),

we found the perturbation parameter 4 . which arises due to the presence of flexibility, induces

a phase delay term gsA-1 in the flexible system output.

To illustrate the principle, we consider a scalar singularly perturbed system similar to

(3.3.2) that describes the flexible beam:

x ax + bz (3.4.8.a)

z =-z + u (3.4.8.b)

where 0 < pu << 1 , and x, z, and u are scalars. Equation (3.4.8) is a simplified version of

(3.3.2). We shall name (3.4.8) as the flexible model with g representing the stiffness constant.

"* ' The rigid model is obtained when we let p -- 0. This results in z = u in (3.4.8.b). Substitut-

) ,' ing this into (3.4.8.a) gives the rigid model equation

x = ax + bu . (3.4.9)

* Frequency domain analysis

*1 The Laplace transform of (3.4.8) with zero initial condition is

X(s ) = U(s) (3.4.10)
(s -a)(1 +,us)

where s = jow . represents frequency. Functions X(s) and U(s) are the Laplace transform

of x(t) and u(t) respectively.
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When j 0 . i. e.. the spring constant e 00 , (3.4.10) reduces to

b a

X(s ) -- Li (s) (3.4.11)
(s -a)

which is precisely the frequency domain representation of the rigid model (3.4.9).

By comparing (3.4.10) with (3.4.11) one would readily see that there is a phase delay of

tan-l(/.j) in the output performance of a flexible robot if a control based on rigid model

assumption is applied to it. It is easy to see that phase delay will increase with the increase of

input frequency. This explains why in a slightly flexible robot, high-speed performance is

usually not satisfactory. though it is fairly acceptable at low-speed maneuvers. The Taylor

series expansion of (3.4.10) with respect to A1 is

b b 1 As)
b+ 0 (A,) (3 4.12)

(s -a)(1 +As) (s -a)

Neglecting 0 (A 2) terms in (3.4.12) and comparing it with the rigid model (3.4.11), we notice

that there is an additional unstable zero in the flexible robot system. This is first observed in

[23]. Thus we have shown that flexibility not only causes a phase delay but also induces an

unstable zero in the system.

In order that the behavior of the flexible model be like a rigid one in the mid-frequency range

where 0 ((s )2) is negligible, we must use a control Uf such that

b b (1 -AS)U(s )-s U(s)

(s -a) (s -a)
Whence

0 _ U(s)
U(s - s (3.4.13)

Note that U(s ) is obtained by sending the rigid control through a phase-lead compensator.

0 Time domain analysis using integral manifold
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By Corollary 2.3.2. (3.4.8) possesses an attractive input dependent integral manifold of

the form: p ,where p satisfies

/1P = -P + U

With

X -Xo+/A.X+A2X 2 +...
2

pop+I.p 1 +izp 2 +...

U -- Uo + 1.Ul1 + P2U2 +..

We have

PO =U -p =uI-o ,

So

, ax + buo +Ab (u1 - o) + 0 2).(3.4.14)

Note that at Ai = 0 . (3.4.14) reduces to the rigid model (3.4.9) and hence we are justified that

u(, is the rigid control applied to the ideal rigid model.

By appending a corrective control u 1 = u , to the nominal rigid controller, the flexible model

will behave like the rigid one in the mid-frequency range where 0 ((Js )2) is negligible.

In other words, applying

0 = U + UU1 = u +/u 0  (3.4.15)

to the realistic flexible system will make the flexible system performance identical to the rigid

tone in the mid-frequency range.

Note that (3.4.15) in the frequency domain is
ON

U -- ( + us

M which is equivalent to (3.4.13) in the mid-frequency range where 0 (A(.s)2) is negligible.
I

The same argument can be applied to the flexible link system (3.3.2) and similar result can be

obtained.

We now recapitulate what we have done. A case study of a flexible beam system reveals

that flexibility causes phase delay and thereby deteriorates its expected performance based on a

rigid model assumption. The frequency domain analysis comes up with a corrective scheme

I'd
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xhich is equivalent to the the time domain approach. where the integral manifold idea is used

as a design tool.

3.5. Case Study of a Mechanical System with Flexible Interconnection

In previous sections we investigated the control issue of flexible link robots where perfect

rigidity is assumed for the joints. Due to the deformation of gear teeth or bearings within the

joints, we also have to face the control problems of manipulators with elastic joints. Spong.

Khorasani. and Kokotovic model the joint flexibility in the rigid link manipulator by introduc-

ing a fictitious stiff spring within the joint [6]. The motor shaft is interconnected to the

relevant link through this spring, which becomes a rigid connection as the spring constant

tends to infinity. In this section, we shall study the modeling of a mechanical system of two

interconnected masses, which is similar in principle to the elastic joint modeling in [6].

Consider the mechanical system in Figure 3-4 where M is attached to a reference frame

through a spring with spring constant k, and m is driven by an external force f. Masses M

and m are interconnected by a stiff spring with spring constant k . and x and z are the dis-AN

placement associated with M and m, respectively. Viscous damping is modeled by the damp-

ing constants D and B. respectively.

The equation of motion for this mechanical system can be written as

Mx = -kx - k (x -z)-B( - ) + Mg - DX (3.5.1.a)

" k (x z)+ x - ) + mg + f (3.5.1.b)

where ( . ) and ( .. ) represent the first and second derivatives with respect to time, and g is the

gravitational constant.

* Dividing both sides of (3.5.1) by mass

k k kB D.
x k =---x- (x- )--(x -)+g -x (3.5.2.a)

M M M M

k (X + B (._ Z' + g + f (3.5.2.b)
m m mac

Introducing a new state variable

0

. , % % - - - -
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y=k,(x-:) . and k. --

Iequation (3.5.2.a) becomes

k, I 2 B. D
x -- x -- -- y -- -Y + g -- x . (3.5.3.a)

M M M M

By subtracting (3.5.2.b) from (3.5.2.a), we get

2 k 1 1 1 1 D f
A Y = -- x -(- + -- )y -'B (- + -)Y -- x - (3.5.3.b)

M M M m Al M m

To transform our system into a standard singularly perturbed linear system, we use

i 1:~2 = [] [1 y ]2 /

4With 
this. (3.5.3) becomes

I

0 1 0 0
-kv D -1i o0

- "2 M M M M g

23 1 0 0~ -MB 
2

+M + (3.5.4)bo 0 1 10
"., Ay3 2 1k m r + M -1Bm + M .2 __

M M mM - M

For a stiff spring k1 is a large constant and this implies g is a small constant. which assures

the singularly perturbed form in (3.5.4). As k -. o. or M - 0 , our mechanical system

becomes the one with a rigid connection and (3.5.4) reduces to

ifr x 1 o
k, D 2 f (3.5.5)2 g Xl + 0

- m+M M +M M +M

with the use of equalities

mM k5  D f"" Y2 = O , y l =  - (-xl + - x , + -)

m+M M M m
S.* obtained by setting IM = 0 in (3.5.4).

Equation (3.5.5) is the system description for the rigidly connected mechanical system as

shown in Figure 3-5. where we have a single object with mass m + M attached to the inertial

29 p
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frame through a spring with spring constant k, and damping constant D.

X2

[j~ 11 A 12  +(3.5.6)

A21 A 22

where u Vand

A 2 2 =is nonsingular.

mM B{M

* In fact

MM

1 0

By Corollary 2.2.2 there exists an integral manifold Z = LX + P for (3.5.6). The constant L

and the variable P satisfy. respectively,

A+A 221 =,ML (A 11 + A 1 2 L) (3.5.7.a)

with AP' = (A 22 - ALA 1 2)p + (V - Lu) (3.5.7.-b)

L = LO +)u4 1+ L 2 +

Equation (3.5.6) as restricted to the manifold becomes

X =(A 1 1 +A 12 L)X +(u +A 1 2 p) (3.5.8)

= (A,, + A 2LO)X + (u + A 12P 0 )

+ /.(A 12L IX + A 12 P 1) + A 2(A 12 L 2X + A 12P 2) +
* -

Consider the case where f is a constant force. such as a mass of weight f. then P can be solved

by equating coefficients of different powers of A on both sides of (3.5.7)

* J
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L-1

PO = -A2

P, = A2 (Pu+LoAL 12Po + Lu )

= A (_ A 1 _ L -4 A v + L ou)

P,= A (P 1 +LA + L 2 Po A + LA2 P 1 +Lu).

With the assumption that f is a constant, u and v will also be constants. So we have

PO = -A- 2 122

P, = A 2 1L 0(-A 12A ,1'v + u)

P 2 
= A22' (LIA 12P) + L 0A 12p 1 + L u )

where
-l

L, = -A 22 "A 2 1

=221 LO(A 11 + A 12Lo)

, L 2 =A (L 1 (A 1 1 +A 1 2Lo)+LOA 12L 1 )

as solved from (3.5.7.a).

Substituting Aij by corresponding entries from our mechanical system description (3.5.4). we

have the relevant coefficients of I.t terms:0 0

A 11 + A 12L(o = 0 1

I M+M m+M1

U +A 1 P,=

m +M

ink mD

L M +MM m +M
4 0 0

. j.hterms:

.4 12L = A 12A , 'L (A 11 + A 12LO)

=0. (A11 + A 12L (,) = O

A 12P 1 0.
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,u terms:

1 0 0

m k,(k,(m +M)-D) m D(2k,(m +M)-D 2 )

(m +M) 4  (m +M) 4  ,W

A 0P, =0
12 f m 2 (k( m +M)D 2 )

m +M (m +M) 3

Thus, (3.5.8) can be rewritten as

k , D I + I .)
x =q (,U)- x +q 2(A) X g + (3.5.9)I-r + M M +M m +M

with 0 (A 3) terms neglected and

2 M 2 (k,(m + M)-D 2)

(m + M)
3

2m 2D(2k,(m +M)-D 2 )

q2(A) = I + M(m + M )4

By using a scaled variablex', = x / q ,(A) (3.5.9) becomes

-- q l(As)k, q 2(iA)D f___(..0X Ai= -x 'U x Y + g + (3 .5 .1 0 )

m+M m+M m •

Note that with A = 0 (3.5.10) reduces to the mechanical system with a rigid connection as

described by (3.5.5), or

k, D
x'=-- X - X + g + m+

m +M m +M fm+M

with natural frequency £0o = 4 , and damping ratio 0 = 4 D7

m +M ksm +M

On the other hand. the perturbed system (3.5.10), i. e.. the one with a flexible connection, can

be viewed as the one with a displaced center of mass, x= x / q 1 (A) , and

perturbed spring constant: q I(i)k.

perturbed damping ratio: q 2(pA)D .
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natural frequency: o = 4ks l(L)

M +M

damping ratio: 2q 2 - --

k, q l(A)(m + M)
The connected system as a whole can be viewed as the one in Figure 3-6 with the above charac-

teristic constants. Suppose we have an underdamped system in the rigidly connected case, i. e.,

0 < 6, < 1 orO0 < < 4.
(m + M )k,

2'For NI and m both large enough as compared with damping constant D. we have q l(A) > 1 and

q 2(/) > 1 . This implies that the mechanical system as a whole has an increased natural fre-

quency and damping ratio due to the presence of flexibility, i. e., A d 0.

3.6. Conclusion

Additional fast states are introduced to take into account the presence of flexibility in the

manipulators. The resultant system is a singularly perturbed version of the rigid model equa-

.-'. tion. Flexible link robots are shown to be in this singularly perturbed form, and the system

equations possess an integral manifold. We indicated and proved that the flexibility is a cause

- of phase delay which induces unsatisfactory performance in the nonrigid robot with a

presumed rigid modeling. Frequency domain analysis and time domain analysis using the idea

of the integral manifold both come up with the same remedy scheme which demands an addi-

tional corrective control be appended to the nominal controller to compensate for the phase

delay. Last. we extended our idea to an interconnected mechanical system which contains

flexible joint robots as a special case. The system with a nonrigid connection is shown to have

.. , a perturbed natural frequency and damping ratio and a displaced center of mass from that of
to

the rigidly connected one.

.q

. .
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4. TRACKING AND DISTURBANCE REJECTION IN NONLINEAR SYSTEMS
BY NONLINEAR INTEGRAL CONTROL

4.1. Introduction

We shall investigate the tracking and disturbance rejection problem of a class of time-

invariant nonlinear systems which are linear equivalent to controllable linear systems. By using

a nonlinear feedback control and a slowly varying integral control the closed-loop system

asymptotically tracks a reference input and rejects disturbances which are both unknown and

slowly varying. The Integral manifold concept will be used to design a nonlinear integral con-

troller.

The so-called PI controllers have been used extensively for asymptotic tracking of con-

stant but unknown set-point and rejection of constant disturbances. For linear time-invariant

controllable systems with nonlinear output. Smith and Davison showed that a full state feed-

back plus an integral control are needed to achieve the asymptotic tracking and disturbance

rejection with the resultant closed-loop system remaining stable [24]. By using a small

integral gain Kokotovic pointed out that in a linear time-invariant system the effect of the

integral control is to counteract the disturbance terms [13]. For nonlinear systems Desoer and

Lin proved that a PI controller can be used to asymptotically track reference inputs and reject

disturbances provided that the given system is exponentially stable and has a strictly increasing

dc steadv-state 1/O map [25].

J.L In this chapter we study the tracking and disturbance rejection for a class of nonlinear

systems which are equivalent to linear controllable systems through a diffeomorphism of

change of coordinates and external feedback linearization. Once the given system is

transformed to its linear equivalent, it is first of all stabilized by using a full state feedback.

A slowly varying integral control is then applied for the purpose of disturbance rejection and

- asymptotic tracking. The overall system consists of a fast linear subsystem governing the

states of the given plant, and a slow nonlinear differential equation governing the variation of

the integral control. We will show that there exists an integral manifold for the overall

0
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system. By stabilizing the linear equivalent system the integral manifold for the overall sys-

tem is rendered attractive. Finally we show that when the system reaches the equilibrium

somewhere on the slow manifold, asymptotic tracking of reference input is then accomplished.

, "We start by reviewing some concepts in differential geometry and external feedback

| linearizaton. and also by giving a description of our problem. To facilitate our discussion we

shall consider the set-point problem alone in Section 4.4. Later, with some additional assump-

tions, we continue our analysis in Section 4.5 when an unknown but constant disturbance is

also present. The result is extended to slowly varying unknown reference input and distur-

bance in Section 4.6. Finally. in Section 4.7. we illustrate our methodology by a second-order

4 ,', example which is unstable and has a nonzero output at the origin.
S

, 4.2. Some Useful Concepts of Differential Geometry

The Lie bracket of two C vector fields on R" f and g, is defined by

f gx Oa xa

were are n X n Jacobian matrices and is itself a vector field on R"

OIX Ox i

Successive Lie brackets are denoted bv

-- ad, ( f ad (

, ad; (g) g

A set of Co vector fields ..... f on R" is said to be involutive if there exist C_

,.* functions aA (x ) such that

Suppose f .... f, are linearly independent on R { f. , is said to be

* completely integrable if there exists an m-dimensional submanifold M in R" such that at each

* point of M the tangent space of %I is spanned by if 1 f .

?'I
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For f0: R '2 -- R the gradient of f0 is a row vector

d_ 0
ax a1

The dual product of d fl and a vector field g = (g .. g, is a scalar field denoted by

< d 0 , g > - + ..... + - g,

With this notion, complete integrability of 1 f......fn can also be deduced from the fol-
g:""- low-ing fact.

A set of vector fields on R . {f ..... f,,, is completely integrable if and only if

there exist n-m linearly independent functions h (x I.....?.. (x ) such that

* <dh,(x).f (x)> = .1 < i ,n n .- ,1 <m j Km for all x ER

With the concepts of involutiveness and complete integrability we now state the well-known

Frobenius Theorem.

Frobenius Theorem: A set of linearly independent vector fields { f....fin is corn- 4
pletelv integrable if and only it is involutive [26].

We are concerned with the class of nonlinear system

x =f(x)+g(x)u x E R' .u ER

which is equivalent to a controllable linear time-invariant system (4.2.1) after external feed-

back linearization

v Av +Bv v E R v E R (4.2.1)

From [271 necessary and sufficient conditions for the local existence of such a transformation

are

0
(i) f(0) = 0.

1' -1 n
(ii) the controllability matrix g ad,1 (g ) .. ad (g ) span R" about the origin.

( iii) the set of vector fields { g ad, (g) . ad? 2 (g) is involutive.

.

V...%
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Before we state the conditions for the global existence of such a transformation, we

integrate along the involutive distribution g . ad 1 (g ) ad' 2 (g) 1.

(1) Solve for all n E R the system

- =ad (g) x (0) 0 (4.2.2 a)

and obtain the solution x( D,).

(2) Solve for all J1 E R the system

dx
- ad/ (g) .x (f .0) =x (f) (4.2.2.b)

S~dO 1

and obtain the solution x( fl.01).

(3) Obtain the solution x (I ,01 02) for all 02 E R the system

PS dx
=O -ad n (g) ,X(f) ,e91 . 0 ) = X(fl .o01) (42.c

dO 2
1  ' (4.2.2.0)

(4) Repeat in this manner until we obtain the solution x (0 01 1 ) for all

E _ER the differential equation

. dx
-g ,x((II ....... 0, _2.0)=x(fl .01......on 2). (4.2.2.d)

a dOn -1

Carrying out the above procedure we have the map

M: x =(x 1 .... x, )-(f 0.
which has a Jacobian matrix, or the noncharacteristic matrix

ax I a x I x

J(x)

ax, ax, a~x"

The conditions for the global existence of the inverse of map M is: [28]

there exists a constant p > 0 such that the absolute values of the leading principal minors

'1¢

*i

* 1*-



64

1 -.. A of J(x) satisfy the ratio condition

lA21I IA o-I

for all x E R . The scalar A, is defined to be the determinant of the matrix obtained by

deleting the last n - k columns and rows of J.

Now we are ready to state the conditions for the global case. Proof can be found in [28].

Theorem 4.2.1

x = I (x) + g (x ) u is globally transformable to y = Ay + By with external feedback linear-

ization if

i), the controllability matrix g(x . . . ad' (g (x is nonsingular
Sf

on R

(ii) the set {(g (x(). ad d(g (xg (x)) is involutive on R and

(iii) the noncharacteristic matrix satisfies the ratio condition on R .

4.3. Problem Formulation

A. System description

Consider the SISO feedback system as shown in Figure 4-1, where P is the given non-

-'A. linear plant. Scalars c and 8 are. respectively, the plant-output disturbance and plant-input

.9.€, disturbance. The scalar c is the reference input. The variables i7 and y are. respectively, the

0 input and the output of the plant P. The controller F takes E. the error between the output of

the plant and that of the reference input plus plant-output disturbance, and produces u that is

to be fed into the plant.

The nonlinear plant P with input u. state x, and output y is described by the following

equations:

0•X here (X + g (X) U (4.3.1) .J

-, .. y *x) (4.3.2)

'.x' xhere .x ER" Y E R .and u E R .The controller is to be designed such that the closed-loop
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.s stem performs asymptotic tracking and disturbance rejection for all given initial conditions

and for all inputs and disturbances satisfying our assumptions.

B. General assumptions

The following assumptions are assumed to be satisfied throughout this chapter.

A4.3. 1: f :R R"andg: Rn- Rr are such that the system x = f (x)+g(x)u is glo-

bally feedback linearizable.

A4.3.2: rR -. R is a C function.

.-1' A4.3.3: The reference input c , the plant-input disturbance 8 and the plant-output distur-

bance c I are all scalar constants (see comments below). We will assume c = 0 . and hence

*E 1 = E , since its effect can be included in c in the closed-loop system.

A4.3.4: The states of the given plant are available for full-state feedback.

- Comments:

From Theorem 4.2.1. Assumption A4.3.1 is required so that our nonlinear system can be

transformed into a linear controllable system by diffeomorphism and external feedback linear-

ization. Since f and g are both smooth functions, it therefore guarantees the existence of a

Yunique solution for our plant (4.3.1) for all t with any given initial condition x. and ii-

tial time t, . Homogeneity only serves to ease our discussion and is not necessary. If (xe u,)

is the equilibrium of (4.3.1). i. e., f (x,) + g (x. )u, = 0 . a change of coordinates

.,,,! x -= x - . = u - u . will bring us back to a homogeneous system. Note also the require-

ment of 7)(0) = 0 as demanded by Desoer and Lin is not required here [25]. For reference

'~." input and disturbance varying at a rate of O( ) . 0 < E << 1 , our methodology can still

," achieve asymptotic tracking and disturbance rejection up to 0 (E) neighborhood of the perfect

one.

W-X
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4.4. Asymptotic Tracking of an Unknown Constant Reference Input

Assuming that there is no plant-input disturbance, i. e., a = u , we shall show that a

nonlinear feedback control plus an integral control will achieve asymptotic tracking of the

constant set-point problem.

(1) External Feedback Linearization

We seek a change of coordinates for (4.3.1)-(4.3.2):

T: R -R

T(x) =

where T is a C diffeomorphism and in the new local coordinates there exists a function

Q2: --R

such that

LF f.(x)= 0

L9 (L fx)) = 0 (4.4.1)

L, (L7 n(x) =0

L9 (L_ 'Q(x)) 0 (4.4.2)

where L, fl represents the Lie derivative of fQ along the vector field g.

L <I a-- < g >
ax

< ... > denotes dot product.

It can be shown that the fl variable we obtained in integrating along the involutive set
'4 '

lg (x), ad.'(g (x ))...•, ad! 2(g (x )) as in Section 4.2 satisfies (4.4.1)-(4.4.2) [28]. We

shall define the new local coordinates by the following C diffeomorphism from the old ones.
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I f(x) T1(x)

L= =) =T(x). (4.4.3)

Zn Ln-1 0t(x) "(x)

We then have the following equivalent system from (4.3.1):

1 -- 2

--., z (4.4.4)

L . "=Ln f,(X) + Lg (L' -la(x ))u

=F(x)+G(x)u

We shall show that a nonlinear feedback control of the form

% u =G1 (U + u- + v) (4.4.5)

will achieve asymptotic tracking of the unknown set-point.

Pick u 1 = -F (x) .(4.4.4) becomes

S01 ... 0
S00 ... 0 0

Z - + (u 2 + v) (4.4.6)

0 000 . . . 1
- 000.... 0 0

which is a standard linear controllable system.

Observe that this external feedback linearizing technique requires full-state feedback and also

the nonsingularity of G(x) . We can carry out the pole placement design or stabilization of the

system once we have our system transformed into (4.4.6).

"
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Hunt, Su, and Meyer had shown that conditions for the global existence of G and a C

transformation (4.4.3) are equivalent to Assumption A4.3.1[28]. Similar argument for feed-

back linearization can also be found in other books[29, 30].

(2) Stabilizing the linearized system

We now apply a feedback control u 2 (Z) to stabilize the linear system (4.4.6).

nn

= Eaz = a1 T (x) (4.4.7)

i=i t=1

where a, 's are chosen so that the resultant system matrix is Hurwitz, i. e., the characteristic

polynomial
n n -- 1 n -2

S- ans - an- S a 
= 0 (4.4.8)

has all roots with negative real parts.

With u 1 and u 2 the given system becomes

0 1 0 0 0
000 0 0

dz00 . .
dz

dd -T

a 1 a, a 3  a . n

= Az + Bv (4.4.9)

We shall study the behavior of the overall system when v is an integral control governed by

V. dv
- = e F(E(z) v . e) (4.4.10.a)
di

* (O.v e) =0 (4.4.10.b)
- where F is a smooth nonlinear function to be designed E is the tracking error and e is a

small positive number. The equivalent system is as shown in Figure 4-2.

Remark: When e = 0 , v = v(O) becomes a constant. By the nature of Hurwitzness of the

, system matrix A the states z remain bounded despite the presence of v, which acts as a con-%, r

stant disturbance to the system (4.4.9).

*
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(3) Change of time-scale and the existence of integral manifold

We now define t = er as the slow time scale, In the slow time scale. (4.4.9)-(4.4.10)

will be in standard form for the integral manifold discussion as in (1.2.1).

dvI
dt = r(E(z) v . e) (4.4.11)

dz
e- = Az + Bv (4.4.12)

dt

It is easy to check that the conditions in Section 1.2 for the existence of the integral manifold

for (4.4.11)-(4.4.12) are satisfied.

MI: Az + Bv =0 gives

S... =z =0 (4.4.13)
and

Z= - / 1 . (4.4.14)

Note that in (4.4.14) a1 d 0 since if c, = 0 (4.4.8) will have a zero root contradicting the

fact that all of its roots have negative real parts.

M2: Trivial.

M3:

where X, (A ) stands for the eigenvalue of the matrix A.

Trivial by (4.4.8).

Hence. there exists an integral manifold of the form z h (v e)for the system

(4.4.11 )-(4.4. 12).

h (v .E ) =h°() + eh 1(v ) + (4.4.15)

h (v , e ) can be found by the fact that it satisfies (4.4.11)-(4.4.12). i. e.,

e -V =Ah(v .e)+Bv (4.4.16)

Using MAE ( Matched Asymptotic Expansion ), we equate coefficients of successive powers of

I '.
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E on both sides of (4.4.16)

e: 0 AhO(v)+ BvM
or

01 0. 0 ha
00 1 . . . h1  0

0 0

+ V v0

00

af1  a21 013  . . . a'n

gives

* -v /a 1

h "(V(4.4.17)

Coefficients of Elterms in (4.4.16):

01 0 .. . 0

0 01 . 0

00 0 .. . 0

A h 0

cav

0 000 .. 1
011  a'2  0' ...

gives 

- 2 a

1 0

0

*111 I
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Since E is a function of the plant-output, which in turns depends on the states z. we use

F(E . v 0) t to express the fact that it is evaluated at z = h 'v). Further analysis

=hl(

with MAE gives h (v .e to any order of accuracy in powers of e

Thus. we have

h( . e) = h (v) + 0E

-V /cai

0

- +0(e) (4.4.18)

0

When the system does not start with its initial condition on the manifold , viz

d(t h) h (v (t o) e) . there is a deviation from the manifold given by

S=z -h(v .0

Lemma 4.4.1

dz
e-= Az + Bv

dt

dv
- = r(z v 't E)_ I dt

A E R"' , B ER" ,t E R .FEC 2 .4EE(0,e*] e" is a small positive number and A is

Hurwitz.

The above system has an integral manifold z = h (v , t . e) with a global region of attraction

for e' small enough.

Proof: see section 4.8.

With this attractivity property the trajectory asymptotically converges to the integral

i. manifold. Note that we have a global region of attraction. When the trajectory is on the mani-

fold the behavior of the system is described by the action of integral control.

The plant-output in the z-coordinates is
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T(x) = i(T-'(z)) = (z)

where

is a C2 function.

The error between the plant-output and that of the reference input in z-coordinates is

E =w(z)-c

which, when the system is on the integral manifold, becomes

E =w(h(v ,E))-c

Note that since we are working on a constant set-point problem for the time being, the mani-

fold is of the form z = h (v ,E).

Since w EC2 
, we can use the chain rule of differentiation and obtain

dw _ Ow a z dv _ Ow Oh dv

dt Oz Ov dt Oz Ov dt Iz =h(, A)

Now

Ow Oh Ow 0h 1 (v .) Oh,, .( )
- +...+ -

az 8~v az1  8' Oz" av

Recall from (4.4.18) we have

Oh I

avOh 2  -1/

'I0 0
Ovah N

av

Oh, 0

Ov

Therefore.
aw ah -1 aw

Ow - - +0(E). (4.4.19)

*z Ov 01 az1 z =-,.f%.

For 6 small enough we further propose the following assumption to assure the nonsingularity

N ..
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of -- when the sy'stem is on the integral manifold = 2 (v .)

O-z 81

Assumption A4.4.1:

The choice of diffeomorphism T has the property that w 0 (1) uni-
0z I  jz = /0 0., 0)

formlv in v. where w(z) = -T(:)) = n(x ) is the plant-output.

With this assumption and the fact that

aw Oh _ w ah I(v .e) O h,j(v E6)
- ++ 

Oz Ov z al, 0, v

where

Oh
d',I~-1-- = I t

8V0

we have

- - = 0(1) uniformly in v.

This in turns ensures that w o h is a bijective mapping. Hence one and only one plant-output

. will achieve the perfect tracking for each reference input.

Remark: The same assumption is made by Desoer and Lin. who claim the implicit existence of

the function h which is made explicit by us [251.

Using the update law, El-1
dv = Ow h (w -c) (4.4.20)
dt 02 0a vI

Ow.
where - is understood to be evaluated at z = h (v . E)

8:

we then have

dw
- (w -c) = -E (4.4.21)

dt ",

N
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Solving

w(t)=c + (w()-c)e_'

Or

E(t ) =E(0)e-' "

Therefore, the tracking error goes to zero asymptotically.

Thus, the nonlinear differential equation governing the desired integral control is given by

-1 -1 :0,
dv aw -- a
- = -E = E + O(E). (4.4.22)
dt a: a, a0 l 1

Or. in the 7 time scale.

dv' '
- -E E + 0(e'). (4.4.23)
dr

aw
The assumption on being uniformly bounded from below preserves the two-time scale

property in the overall system.

The overall system will finally converge to the uniformly asymptotic stable equilibrium

(z . v, that satisfies

0=E =w(h(v .e))-c (4.4.24.a)

0=6e -(0,v e)=A:, + Bv' . (4.4.24.b)
av

-_. Solving (4.4.24), we obtain the equilibrium point given by

v-= (w o h )(c)

,0
00

').. z, h (v , )=-A- Bv,

0

*We have shown that for any given initial conditions the closed-loop system will converge

asymptotically to the integral manifold due to its global region of attraction. The motion on

%0 .A&'iI

a:q I*a!.
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the manifold is governed by (4.4.23). which also converges asymptotically to its equilibrium

point with bounded plant states and a zero tracking error. To summarize our result, we have

the following theorem.

Theorem 4.4.1:

The nonlinear plant X = f (x) + g (x ) u with output y = 7)(x ) will achieve asymp-

totic tracking of an unknown constant set point for all initial conditions (x o , t ) if a control

of the form u = G - (u1 +u 2 + v) is applied, where

(a) G(x)= L(Lf'-I-(x)) u1 =-F(x) , and F(x)=Lf CI(x)where

fl: R - R is a scalar field that satisfies

S g(x) .ad'g(x) ..... ad-2g(x) (0 ..... 0) forall x ER .andOx

.101%(ii) - ad g(x) d 0 forall x E R
ax

'7

(b) u, = Ze;z, where
l=1

-L"(x )

L, =(x

and a, s are such that for

(S a n-1'-" ?(S ) = S,-a S -- , .. -a

p(s) has all roots with negative real parts.

a i(c)

-1

dvOwO

dr Oz Ov -z .E)

E (x)-c w =roT -

E0. 6 1 . E is a small positive number that satisfies Lemma 4.4.1 to ensure a globally attrac-

%S



76

tive manifold. The scalar E is the tracking error.

Remark: NA ith our methodology exponential stability as demanded by Desoer and Lin for a 4

constant input u in the system. x = f (x) + g (x ) u is not required [25]. One choice of the

scalar field fQ can be obtained by integrating along the involutive set

{g (x) , ad 1(g (x )), . . ad' - 2(g (x ))) as in (4.2.2) Section 4.2. Our result here is global.

For the local case the assumptions need only be satisfied on the domain of interest instead of

V%,, the whole R space.

With Assumption A4.4.1 on the uniform boundedness of -- and a small itegral

-- andasalitga

gain E .we have the following Corollary.

Corollary 4.4.1

J.- ' Asymptotic tracking and disturbance rejection for the nonlinear plant x = / (x) + g (x)

with nonlinear output y = r(x ) can be achieved if a control u = G ( + U + + i) is applied.

The functions f g , G u 1  .u2,and 7 are as in Theorem 4.4.1 and

= E01 1E lawdr II. = (-a/1 0 ..." 07

.. where E E (0. 0 < << 1. E is the tracking error.

Proof: -.

dw aw ah d$

'S~dt 0: a0$ dt I u

With

EE - iE

d r O:z o z -. 0. az) O: W/)( r
and the fact that

a-0a- ,%- . - + Et,(, . E)

..- " We have

5 N,
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. -1

dw aw a: d$ Ow /h law ahli

=-(I + 3( . )) E

Recall E w -c . we thus have d1

dE
-= -( + e3(N E)) . (4.4.25)

d r

With 3($ . -) being uniformly bounded, there exists a such that for all E E (0 ,] (4.4.25) is

1" u.a.s.. So with =Min F " ] .E -0 as t - S

QED

-U
4

4.5. Disturbance Rejection

We now impose a constant but unknown disturbance S in our plant-input as shown in

Figure 4-1. The actual system is S

X f (X) + g (X i

where

i7 =U +.

In the new local coordinates described by (4.4.10)

€49

2 3

-1 -;

=F(x)+G(xLF

where F(x) and G(x) are as defined in (3.11).

When we first apply

N-U-
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U1 = -F(x )

it results in

G(x =G(T-I(z))8

With u, and v also taken into consideration, the overall system becomes

0 1 0 . . . 0

0000..0 0 l
0 0 1 . . . 0 €,

- : + (v + 8G (T-I(z))) (4.5.1.a)

dr

0~
0 0 0 . ..1
C1  a 2  OV3  • . O'n

dv
- rEF(E .v .). (4.5.1.b)
d~r

We now propose the following assumption.

Assumption A4.5.1: The plant-input disturbance is an unknown but small constant.

W With A6 we check the conditions for the existence of an integral manifold for (4.5.1).

MI: setting the RHS of (4.5.1.a) to zero gives

+1 1 + 8 G (T-(.- ... , 0)) = 0 (4.5.2)

By the implicit function Theorem for 5 small enough (4.5.2) has a unique solution given by

"- -- -F/a I +4 0 (8).

N12: Trivial.

N13: Taking the partial derivatives with respect to z on the RHS of (4.5.1.a) and evaluate it at

z h '(v) gives -b

4
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0 0 1 0 0 1 
0 0 0 0 0 0 0 0

- (4.5.3)

0 0 0 ... 1 000.. .
Q o+ 8

1 a,+ 8 , a 3 +8 3 .. . an +8, 8n QO a 3 ..

71 where

81

8

az iz = h o)

and h°(v) isas in NI.

The characteristic polynomial of the perturbed system matrix (4.5.3) is given by

S n(s) s - . n ...... - Z . (4.5.4)

With Assumption A4.5.1, we now carry out the root sensitivity analysis for (4.5.4).

Suppose P(s) has roots given by

P(X =0 , I 1 <n

i. e..

p n n --- P (s ) = s -a n s - ,. .- o

n
= Il(s - x).

Denoting AX, and Aak as the perturbed part of Xi and a, respectively, we have

n h

= . (4.5.5)

k =1 'Ok

In our case here
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A,4 =0(8). 1 k < n

Now

ap _a" 6A,

ak ax, 6ak
where

ar --S 1  JP (S

v ~aCk ax, =

Thus.

~ ap a"
aak ax, aaik 11s=k

k -1

1-x ) (4.5.6) Fr
]J (Xj ,

From (4.5.5)-(4.5.6) it is seen that if we do not have tightly clustered roots, which can be done

by eigenvalue placement at our disposal as in (4.4.14). the perturbed system matrix in (4.5.3) J

will still remain Hurwitz. Hence, the existence of an integral manifold is still guaranteed and

the rest of the argument is similar to that in Section 4.4.

Remark: Suppose the plant-input disturbance 8 is not restricted to a small perturbation and f

the integral control is a constant v (t) v (0) . but somehow the closed-loop system remains

exponentially stable as assumed by Desoer and Lin [25]. In order that our methodology be

feasible in this case, we require the existence of a unique solution k*(v ) to (4.5.2) so that the

* A existence of an integral manifold for our system is assured. This is equivalent to the assump-

tions made by Desoer and Lin for the existence of a CI function01

h: R-_RB

such that

=h(9 e) forall FER

where (F T ) is the equilibrium point for the closed-loop system and w oh is a bijection

mapping as deduced from Assumption A4.4.1.
2'iLu"
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In other words, an alternative assumption for disturbance rejection is the following:

Assumption A4.5.1.a

(i) The disturbance 8 is a bounded constant that gives a bounded solution z (,) in (4.5.1) for

all constant v and

(ii) C,2-1 + i + SG (T-1 -. 0, 0)) =0 has a unique solution 51 = (  8).

Note for 8 small enough the above assumption is always satisfied. With this assumption

it can be shown that the existence of an integral manifold z = h (v , 8) is still satisfied and the

rest of the argument is similar to that in Section 4.4.

We have shown how a class of linear equivalent nonlinear system can achieve asymptotic

A tracking and disturbance rejection for any given initial conditions by external feedback lineari-

zation and the integral manifold approach. The nonlinear system x = f (x) + g (x) u is first

transformed into a stable linear system : = A. + By by a nonlinear feedback and the use of

new local coordinates, z = T (x) An integral control of the form V = e6 (E . v . 6) is

adopted. The concept of integral manifold is then used to design the integral control and prove

that the plant-output asymptotically tracks the given reference input and simultaneously

rejects disturbance.

4.6. Asymptotic Tracking and Disturbance Rejection of Slowly Varying Unknown
Signals

We now consider slowly varying unknown bounded signals as our reference input and

disturbance. By using the integral manifold concept we shall show how the asymptotic track-

ing can be achieved when some extra assumptions are satisfied. The overall system is given by

x f(x)+g(x)(u +8(r))

u G1 (u 1 (X) + U2 (X +V)

e = r(- , . .r)

z- T(x)

E (,r) = (. ) - c (,r)

-"
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C = e~ ,(,r)

8= e2 _(_r)

dx
where x -and -y(r) and a-(-T) are smooth functions that give rise to a bounded reference

input c(t). and a small disturbance. i. e.,

Assumption A4.6.1:

The reference input c (r) E D .the disturbance 8(r) E E

D={c ERIc ()< B C() OC) for all rE [ r,,oo

E 8 E RI S(r)I< () (E , for all TE [r, ,oo)
wh -re B is a positive number , is a small number as presumed in Assumption A4.5.1, and

TO is the initial time.

Theorem 4.6.1 A

For the nonlinear plant x = f (x ) + g (x )u with nonlinear output y = -(x) a slowly

varying unknown reference signal c Cr) and a disturbance 8(,r) both satisfying Assumption

A4.6-.1. the control u G = ( + U 2 + 0)will result in tracking error E (r) - 0 (e) as

T -0.U and 0are as in Corollary 4.4. 1. e E (0 , ~]is the integral gain and

0 < << 1.

Proof:

In slow time scale t Er

* dz
E- Az + B(0 + SG (4.6.1)

dt

dv
- r(z .. Sct )(4.6.2.a)

dt

dS
6 E0(t) (4.6.2.b)

d ~where &(t ) = -(r/e) .etc.

* By Lemma 4.4.1, (4.6.1)-(4.6.2) has a globally attractive integral manifold

z=h( 8 ., e, t (4.6.3)

01 4 1II't§ )6 jlt O
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and can be solved from the PDE

ah- ah Oh
6 (- (h .. 8. e .t) + - + -) =Ah + B + 8G.

&~as at

Denoting

h=h 0+Eh +eh 2....

we have

6o. Ah +B (N +SG(h°))=0 .h =h ( ,8)

i'(h 8,8,0 ,t) =Ah' + a [B 8G(h) 1,=0 ,h'=h($ ,8 .t)

etc.

Hence.

h ( . 8.e .) = h($ . 8) + e(. 8. .e t)
* ~ Thus. when the trajectory of (4.6.1)-(4.6.2) is on the manifold (4.6.3), the plant-output

becomes

w(z)=w(h( ,8.e.t)).

Differentiating the above expression with respect to t gives

dw _ w Oh d Oh Oh
(-- + - &(t) + e- ) (4.6.4)

dt aza dt as at

Ow Oh°  d$ - Ow di;! ,=-( -)-+E'I'(v .8.t .e)=(-1)(---)-+'(' .,8t .e).
a z v dt Oil az 1 dt

By adopting the integral control

of, a'w = o E =i a I 'w (w - c ).(4.6.5)
dt az 0z

4 we have from (4.6.4)

dw
- _-(w -c) + EV• (4.6.6)
dt

Now by using a new relative slow time scale s et . we have the following subsystem:

v'.
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dw
- = - c) + e'I (4.6.7.a)
ds

dc r
-= (s) (4.6.7.b)
ds

where (s ) = y(r/) It is easy to see that (4.6.7) has the following integral manifold:

w = W(c * s . E) (4.6.8)

where W satisfies the following PDE

aw aw
e(-7 + -) -(W - c) + 6.

ac ras

Solving

W(c .s .)c -((s)+ 'I0) + (4.6.9)

Overall. the trajectory will asymptotically converge to the integral manifold (4.6.3) and then

later to the integral manifold (4.6.9) within the manifold (4.6.3).

Note when the subsystem (4.6.7) is on the manifold (4.6.8) we have from (4.6.9) the follow-

ing:
4

w -c =0(e). (4.6.10)

By (4.6.10) and (4.6.6) we conclude that asymptotic tracking and disturbance rejection to

0 (E) neighborhood of origin can be achieved when an integral control of the form (4.6.4) is

used.

QED

* -4.7. Example and Simulations

Consider the nonlinear system on

X2•x+ +x, +e 2-

--. x2Xe- 2 (4.7.1)

= f (X) +g(x)u

6R
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dx 1
where u represents control and x - is the time derivative of x 1 etc. Note that (4.7.1)

d 7

has an unstable equilibrium at the origin because

_f = 12

ax 1(00) [
Compute the Lie bracket.

If -g = 0

02
it is easy to show that {g . g I ) is linearly independent on R.

Integrating along I g. [ gives

XJ i2 01" (4.7.2)

The noncharacteristic matrix of (4.7.2) is

2 1-2 0=

which satisfies the ratio condition with p = 1/2 [28].

2Thus, we are assured that (4.7.1) is external feedback linearizable on R1

For our new local coordinates we choose

. ,(x)/2
- 2z '; 2  [L; n(x ) -li

IL I '( I (x ]+ - + X e2

2 2-
I

differentiated with respect to r gives

d:

d T

dz 2
- F(x)+G(x)xu

d T

where

2-1 x 1 2 2F(x)= -((1 +x )(x + - +x 2 +e -- 1)+x(1 +e )

2 2

II



86

2
It is easy to see that G -'(x )exists on R.

Following a discussion in Section 4.4 we now apply a nonlinear feedback of the form

u =G1( +U

where u ,is used to cancel the nonlinearity andis given by

U1 =-F(x)

The linearized system is stabilized by u, . A choice of ut, is

u,2  -6z1-5zV;

2

The equivalent stable linear system is then given by

~dz1

%di 10 1 i1+ 101(43
dz2  1-0 Jj5 1,J ~I(.73

d T

Suppose our plant output is

y =77(x>=e +X I

W(z) e 2z

Let the unknown set-point be denoted by c. I

0 The tracking error in z coordinates is

E(t)=-2-- 1 + e -c =w(z)-c

Equation (4.7.3) in slow time scale t Er is

dt [0 1 1 101,
dz- 2 = -6 -5Z2 1 jV(**

dt

which together with nonlinear integral control



dvI-= r'(E (z) v, .E)
dt

have an integral manifold =h (v ,e) = h°(v') + eh '(v) + and h satisfies

ah.,e- v f,=Ah(v ,e)+Bv.

The M o manifold is obtained by solving

0= I-6 Jh± J'1v
6-

So

°< ,-- I°  51 M°v >
"0 1 --61 1 v =16

'kV> I-6 -5 1 0

So

w - - 2,) o 1 /6 1 -2:

[82( +e) 01 10 I ~ +3

When the nonlinear integral control is governed by

dv 1 -eE(t) 36E(t)- a bh E-'

dr l Ov 1 e - 1

3
we have

dw w h dv
-- = -e(1 +O())E -(1 +O(e))(w -c).

dr z av dr

Consequently. E (t) -- 0 asymptotically. A simulation with set-point c = I + e . = 0.05

and various initial conditions is shown in Figure 4-3. It is worth remarking that in a constant

set-point problem perfect asymptotic tracking is achieved even though we design our integral

"5 controller based on 0 (e) approximated manifold. Regardless of the initial conditions, all tra-

6 jectories converge to the manifold and then flow along it towards the equilibrium point. As

can be seen from Figure 4-3. the z - coordinate of the equilibrium point is -1."2. which

corresponds to x1 = 1. As expected. all the trajectories asymptotically converge to the equili-

6brium. point where we achieve perfect tracking. Figure 4-4 shows the tracking error E(t)

asymptotically goes to zero. When an additional unknown bounded disturbance is also added.

* 4; I



88

the simulation in Figure 4-5 shows that asymptotic tracking is still achieved. As shown in

Figure 4-6, with a new value of 6 = 0.018 , 0(6) asymptotic tracking is still achieved when

both reference input and disturbance are slowly varying. 8 3.718 - 0.0972 sin (T/300) and

c 0.5 - 1.62 x 10- 1 cos (r/50).

.,'!
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4.8. Proof of Lemma 4.4.1

Proof:

. e .~ In order that h (v , t E ,) be an integral manifold for the system, it is necessary that it

satisfies the following PDE:

3'h

6(- r(h(v ,t ,e) ,v ,t ,E) + -) = Ah(v ,t .e) + Bv. (4.8.1.a)
,at

Let

h (v . t . E) = h '(v , t ) + e. (v . t . e). (4.8.1.b)

Equating the coefficients of powers of F0 on both sides of (4.8.1.a),

6:$ Ah°(v ,t )+ Bv =0 (4.8.2)

if or

"" h°(v t) h(v .t) =h°(v) -A-Bv

with (4.8.1.b)

ah ah
Oh (v ,t ,e) ,v .t .6) + - Ah(v ,t ,e) (4.8.3)

,v t
Since A is Hurwitz. there exists a positive definite symmetric matrix P such that

A TP +PA < -C

where C > 0.

.' r* ,'To show that the integral manifold has a global region of attraction we shall prove that the

* deviation from the manifold goes to zerar asymptotically for all initial condition (i. t, ) with.

"i *Taking derivatives with respect to t on both sides of the above expression gives

Sd- dz -6 Odv' Oh
E- -= - (- - + -)

dt dt Ov dt ot

Oh OhA \ .: + Bi- - h(- r(: . V .t .))+ - )
Ov Ot

•

*



-m-R-052 INTEGRAL MANIFOLD IN SVSTEM DESIGN WITH RPLICATION TT 2Z2
FLEXIBLE LINK ROBO (U) ILLINOIS UNIV AT URBANA
DECISION AND CONTROL LAB H C TSENG JUN 98

UNCLASSIFIED UILU-ENG-88-2221 NBi4-84-C-0149 F/G 12/9 MLEhlhEElhEE11EE
EhE~hh~hh~hh

IllEllllll-l



0.

11111~ 111112~

IIIIIIIA-1.1l Ill rIIUI

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-l19,3-A

N

• s • • ••-i



90

Oh O
=A(S +h (v .r , (rA))+ Bv Ohe( ( _F +h(v t v t E)+ )

= A (i+ h(v))+Bv + e(Ah- -hr(.: + h(v.te).vt.e) -h
Ov

By (4.8.2) and (4.8.3)

di Oh6- = A S + ,E - (F(h (v , t ,), ,t ,e)- Fr( .- + h (v , t . ) v t , ) .

dt Ov
We now use the Lyapunov function v (5) = 7 P > 0 to show that the above equation has

an asymptotically stable equilibrium at the origin.

EV,< C- +2 26 P - h (v , ,r)., v t ) r(-: + h(v t E) v t ).
.,-.;Ov

Since r E C , is Lipschitzian , i. e..

[fth (v .t .,) . vt .,E)- F(, + ht(vt e ) v .t .e)[< L iI

where L is a positive constant.

Also, since

ah _h + '
0h_ O+6L =-A -1B + .

av av Ov av
we have

7 110 I < 211 A -'B •l.

av
Pick ki.k,>O such that I <2 A p k2 I512 fr aI l R WC n > . for all Z: E R W ith

e E (0 where e =k 1/5k 2 L jA -1B we have V* < 0 uniformly in z and hence the

uniform asymptotic stability of the system governing the deviation from the integral mani-

fold.

QED

-. V p. -
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5. OPTIMAL CONTROL SYSTEMS

5.1. Introduction

We have shown in Section 2.2 how a linear system with slow and fast modes

= + u ,A2 nonsingular. a, A 2 B2
J. ~6Z A21 A- 2  2 2 snua

is equivalent to a pure slow problem with a lower state dimension

X= (all +al:-L)x

¢ r' z (t)L x (t)

provided that the initial conditions are on the integral manifold z = Lx i. e..

z(t,) = Lx (to) and L satisfies (2.2.3).

' .This type of model reduction is made possible when the initial conditions are restricted to

the manifold. We shall see in Section 5.2 that there exists a reduced order optimal linear-

) quadratic system which is equivalent to a higher order regulation problem with slow and fast

. dynamics. When the existence of an integral manifold is assured in the optimal system, we

, -' then pursue the problem where the initial conditions do not start on the manifold. It will be

a shown that the optimal system can be decomposed into two subsystems. One of these is a

decoupled optimal subsystem that governs the convergence of the trajectory to the slow mani-

fold. For the system with slow( 0(1) ) and fast( O(/6) ) modes. the cost required to bring

the trajectory to the manifold is of 0 (E) in the overall optimal cost. A complete decomposi-

"* tion of the optimal system into decoupled pure slow and pure fast subsystems characterizes

the slow-fast behavior of the optimal trajectory. For fixed end-point tracking problems we

propose an approximate scheme that renders similar analysis applicable.

5.2. Linear-quadratic Optimal Problems as Restricted to the Integral Manifold

, tWe study the regulation problem of the following system:

* V
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x *.1 A 2 Ix2  + LB' u A,, nonsingular .r ER ER' .u ERr (5.2.1)

J= fx'Qx +zSz +u'Ru dt (5.2.2)2 0

IX 0. 
free1 0 t = "0

where A, 's and B i 's are understood to be of appropriate dimensions. Matrix R is positive

definite and Q and S are both positive definite or positive semi-definite matrices. The constant

E is a small positive number. Vector V stands for the transpose of the vector V .

We are seeking an optimal control, u . that minimizes the scalar cost functional. J.

Consider the reduced problem. i. e., 6 = 0. Irom (5.2.1)

Y = -A 221 (A ,IE + B Uf (5.2.3)

Substituting this into (5.2.1)-(5.2.2) we have the following reduced linear-quadratic problem:

. = Ao0  + Boi' 17

Mi MinMin~ io Of + 2'o +2'Co0 £ + U'R Rof dt
Uf u 2 0

.O) =xO , F(.oo) free

where

A 0 = A 1 1 1- A -1A 1A 21

B O = B 1 - A 1 2A B2

Qo=Q +(A 22A 2 1) S (A -'A 21)

R0 =R +(A-'B 2 )S(A2 1 B 2)

CO = (A 2
1 B2 )S (A 2A 21 )

It is obvious that the reduced optimal problem is easier to solve, due to its lower state dimen-

sion. Note that a coupling term ifC o .T appears in the reduced cost functional ,. To facili-

tate our discussion. we adopt the following assumption:
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Assumption 5.2.1

The reduced problem has a unique optimal solution.

Derive the optimality condition for the reduced system by Hamiltonian formulation[31]
¢1

H = - (Qo. + 25CoJ + i7RO) + X(A + Bo1)
2

where X is the costate variable and satisfies the following state equation:

X - = -0 X •

, In order that U' be an optimal control it is necessary that

r3-/o . -

6H0
-ROEf + Box, + Co. =0

Thus,

i*= -Ro-l (BO X_ + CoZ).

Thus, the optimality conditions for the reduced system are

Ao- BoRoC o  -B R o-'B

x C, -(A,,- B, -J 1C) (5.2.4)' " [~~~~~~~-Q o + C oR -Co-Ao-Bo l )

(o) = X 0 (oo) = o.

When e is small but nonzero we can use the manifold idea to obtain an equivalent system.

- Since we have a system (5.2.1) subject to the constraint of minimizing (5.2.2), it is not easy to

see the existence of the integral manifold. Instead we investigate the closed-loop system 'hen

the optimality condition is obtained from the associate Hamiltonian equation.

H =-(xQx +zSz +uRu)+X, (A 1 x +A 12z +Blu)+ -(A2 1x +A 22z +B2u)2 .

l (xQx +zSz +uRu)+ X (A 11x +A 1 2z + B~u + X, (A 21x +A 2 2z + B 2u)
2

where X, and X. are the associate costate variables. The variable Xz = - is the scaled

costate variable. In order that u be a minimizing control to (5.2.1)-(5.2.2). it is necessary

0"
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that.

- 0 and > 0.at a u 2

e..

a Ru" +BIX, +B2X\ =0 (5.2.5)

and

R > 0. (5.2.6.a)

Equation (5.2.6.a) is trivially satisfied since we assume that R is a positive definite matrix.

(5.2.5) gives
vi-.

u -R (B, + B X) (5.2.6.b)

S The standard calculus of variation approach to optimal problems[31] yields the following

costate equations:

j = Qx - A ;, , - A2, Xz

a"

6X, = - - = - z A 12  X , - 2  X ,

We then come to the optimality conditions:

All -B 1 R B ' A -BR 1R B,

X- -Q -A 11  0 -A 21 X,

= 2  I 1, (5.2.7)A 21 -B2 R - B 1 A,22 -B.,R-B2

f•X, 0 -A 12 -S -A 22 Xz

L 0,E! = 0 0
d ]~X r =0 tco

Since this is an infinite-time linear-quadratic regulation problem, we have the equivalent end

conditions

• = . =0

In view of the cost functional to be minimized, a good controller should drive the states to zero

1' *A1'
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as time tends to infinity. We now show that the reduced optimality condition obtained by set-

ting e = 0 in ( 5.2.7) is identical to the optimality conditions of the reduced optimal problem

(5.2.1)-(5 2.2).

.~".Rewriting the optimality conditions ( -5.2.7) by keeping u and setting E 0 gives

=Aiix +A 1 0Bj*(5.2.8)

0=A2 1X +A 2 .,z 0+B 2 U (5.2.9)

A. X, =-Qx -AIIX, -A ,jx (5.2.10)

0 =-Sz 0  AUX, -AV, A (5.2.11)22z

where u' is given by

=Ru +BX, +B 2 ,=0

Eliminating X 0 by (5.2.11). we have the reduced optimality conditions

xi =A 1 1 x +Al 2z +Blu' (5.2.12)

A, -Qx -A I 1A, +A42 1A 2 'I(SZ 0 + A 1 2 Ax (5.2.13)

x (0) =x 0  x (00) =0

where u satisfies

Bu + B IX, -B 2 2'I(Sz 0 + A 1 2 X., 0 (5.2.14)
dr and z' satisfies

A2 1 x +A A,: +Bu (5.2.15)

* Equations (5.2.12)-(5.2.15) are the reduced optimality conditions.

.J. We now study the reduced system and find its optimality conditions. When we set e = 0

in (5.2.04-5.2.2), the optimal infinite-time regulator problem be-comes

x = A ,1x + A 121 + B ju (5.2.16.a)

0=A 2 1 x + A 2 22 + B 2 U (5.2.16-b)

'I The associate Hamiltonian equation is

01
H --(xQx + ISz + uRu)+,~ (A ,x + A 1 2. + Bju) (5.2.16.c)

2

44Pe
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where X, is the associate costate variable and -: (x u satisfies (5.2.16.b).

Necessary conditions for optimality are

- =-RU + B X" + .- (S: + A 1 2 X=0
au au

X. 8H---Qx -A 11 XX --- (S-Z +A 1 2 X)
Ox ax

From (5.2.16.b)

- -BA 2 and -=A 1 A 22
au a

So the reduced optimality condition for the reduced optimal problem is

X = A 1 x + A 1 2 .z + Blu (5.2.17)

X,~ -Qx - A 11 Xx +$A,,A 2 2 (Sz + A 12 X, (5.2.18)

u satisfies

Ru + B j + - B,A 1(S! +A 1 2  0 (5.2-19)

and Zsatisfies

0=A 2 ,x +A -F + B~u (5.2.20)

Comparing (5.2.17)-(5.2.20) with (5.2.12)-(5.2.15) we come to the following Lemma: 4

Lemma 5.2.1

The reduced problem (5.2.16) is formally correct.

Now. we recapitulate what we have done. We derived the necessary optimality condi-

tions for the full optimal system (5.2.1)-(5.2.2) and then obtained the reduced optimality con-

ditions (5.2.8)-(5.2.11) by setting e = 0 in (5.2.7). They were compared with the optimality

conditions of the reduced optimal problem (5.2.16) and were found to be the same. In other

words. the reduced optimality conditions (5.2.8)-(5.2.11) correspond to the optimal problem

given by (5.2.16). Assumption 5.2.1 implies that a unique solution to (5.2.19) exists. The
* -A

nonsingularity assumption on A 2 made the above discussion possible.
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withObserve that the optimality conditions (5.2.7) can be viewed as an initial value problem

[Z

where K satisfies an algebraic Riccati equation associated with the entries of the system matrix

in (5.2.7) [31]. Thus. we can rewrite (5.2.7) as

0

1 0

F 0
z F 1 F22  H

-xz . A I o,
2n X 2n X x 2m 2,, x 2n R2m x 2m

where F. E R F12 E. F 21 E R ,and F 22 E R correspond to

appropriate entries of the system matrix in (5.2.7). It is known that r has (2n + 2m) eigen-

values of which 2n are slow ( 0(1) ) and 2m are fast (0 (1/)) . From[32] it was pointed out

that half of the eigenvalues of r are symmetric to the other half with respect to the origin.

Because of the clear slow-fast separation due to the smallness of e . we can conclude that r has

2m fast eigenvalues. With these facts we are ready to prove the main theorem with the fol-

lowing assumption:

Assumption 5.2.2

F, 2 is nonsingular.

• Theorem 5.2.1

-.' There exists a lower order optimal problem

X" A x, + B, u X E Rn .uEER' (5.2.21.a)

W D

[A )AI.

. .
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Min .V= - f x QEx, + 2u. CExE +u, REudt (5.221.b)

0 Ix'(0) = xf= x x(o) free

that is equivalent to the optimal regulator problem (5.2.1)-(5.2.2) for some initial conditions

0 0 T(x . z

This means that the optimal controls in two optimal systems are the same:

U (t)=z4(t) t 0
Furthermore. the state trajectories along this optimal control are also the same:

x (t)=X,(t) t > 0

Proof:

The optimality conditions of the full-order optimal problem (5.2.1)-(5.2.2) is in the

standard form of a singularly perturbed linear system ,4

X Fit F 12 X, x,
=Z I= (5.2.22)

u, =-R- (BIX, +B 2 X.

By Corollary 2.2.1. there exists an integral manifold (5.2.23) in (5.2.22).

• z x

I =L (5.2.23)

.where L E R 2m X 2 satisfies

F, 1 + F 22 L eL (F 1 1 + F 12L)

Furthermore.

L (e) = -F-'F2 1  + 0 ().

Thus, (5.2.22) is equivalent to the following lower order system (5.2.24)-(5.2.25). provided
• ._

*!
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i. e., the initial conditions are on the integral manifold (5.2.23).

and the optimal control ut on the manifold becomes

-R = + ( 1 + BL ) (5.2.26)

(F(B' x F+ (B) 2 22),

Note the dependence of L on the parameter =. At e = 0 we have the reduced opt imality condi-

tions from (5.2.22). and by Lemma 5.2.1 this is identical to the optimality conditions (5.2.4)

r, "of the reduced system. Thus. we have

V (F 1 
+ F1 2Lo)=0 = Jo -O C (5.2.27)

. -Q + Co 0 1C -(Ao-B ORO-1CO)

Note that (4o)22 = - ((O) 11

Fore *0

.!, ), (DtO +,

To show that ((P)' 2=-(()11 We shall prove it by contradiction. Suppose

I ( 2 -( ) . We understand that 0 has 2n eigenvalues and half of these are svm-

metric to the other half with respect to the origin. So with some elementary iu" operations

applied to ( , we can obtain a matrix (D, with (4122 - - (1i)d I-

D,E =E (O + eE 1 (e) E *I

* However, since we already have (0O)22 = - ("O)11 premultiplying 0o by an elementary

- matrix E other than the identity matrix would thus deprive o of this property. Therefore.

- ('-) Q. contradicting our assertion. So we must have (0,),2 = ('h) l . It is easy

to see that the optimality conditions of (5.2.21) are the following:

6
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X ,(iC BRE-1 BE

I Q CEE CE -A - E-~

I 0.
k0

0 IX If

u; =-R (BeX, +C, x,).

The quetion of the existence of an optimal problem with optimality conditions and optimal ,.

control identical to (5.2.24) and (5.2.26), respectively, is equivalent to the issue of the solva-

bilitv of (.A I B Q .Q, RE) in

.4 E BRE 1 CE -BER-' BE

"Q, +CERJ1 C -(Ae-B R' C) =
-R 1 (B 'X, + Cx,) -R- (B 2Lx + (BI + B L 2 ) ).

XE X
x

Since (O)DE = - ( )1n , we have a well-posed proble-i of five equations with five unknowns:

(A I B,. C, . RE) viz.

A BE - BER E C = ODE) (5.2.28)

-Q, + C, R - C, = ((,,),1 (5.2.29)

-B f R7 Be = (401I2 (5.2.30)

-RE' CE = -R- B2 L 21  (5.2.31)

Re- B = - R-' (B + B 2L 22) (5.2.32)

We have shown that the solution (A B o. C 0o. R 0) exists for the above equations at

= 0 . By the implicit function Theorem. for e small enough, there exists a unique solution of

the form

B =B + 0(E)

II
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R, = R,, + O(E)

A = A + O()

Ce = CC, + 0 (F)

Q, = Q0 + 0 (e).

Thus, this completes our proof.

QED

We have shown that a lower order optimal system possesses the same optimality condi-

tions and optimal control as that of the full-order optimal problem with its initial conditions

restricted to a manifold. The (A E . BE IC . .Q , R ) characterizing the lower order system is

of 0(E) perturbation from.the (A 0 , B o . C o . Qo. RO) of the reduced optimal problem. The

unique existence of (A, . B, . C, . Q, . RE) is assured by the existence of

'(A. (.A B 0 , Co Q,0 R) and the smallness of the perturbation parameter 6. It is worth point-

ing out that in general a set of optimality conditions does not correspond to a unique optimal

I problem. As an illustration, consider the optimality conditions

x A -BR C -BR B

I = I-Q + CR -C -(A - BR-1C )

x(0)= x X(T)=0 , R > 0

It is easy to check that both of the following optimal problems come up with the same

optimality conditions as above:

X =Ax +B u

.Mir Min
= -fx'Q x + 2u'C x + uR u dt

£10

x(O)=x , x(T) free

and

X (A -BR-C)x +B u
6
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Min =Min1ff x(Q -CR- C)x +uR u dt

U U -
x(0)=xo . x(T) free.

However, the optimal control in these two optimal problems is different.

5.3. Decomposition of Optimal Linear Systems with Quadratic Criteria

As discussed in the previous Section. a full-order optimal system is equivalent to a lower

order one, provided it starts with its initial conditions on the integral manifold. When the ini-

tial conditions are not on the manifold, there is a deviation from the manifold. It will be

shown in this Section that the optimal trajectory will converge to this slow manifold. This

mechanism is analyzed by decoupling the optimality conditions into two. One of these

corresponds to the optimal system as restricted to the manifold. The other one governs the

behavior of the deviation from the manifold.

We start by looking at the optimality conditions (5.2.7) of the linear-quadratic regula-

tion problem (5.2.1)-(5.2.2):

xj A 11 -B1 R 'B1 A 12 -BR B 2  x x.

X, -Q - 1 0 - 1 X -I, 11X
Z; A, -B R B z F, 1 F, 2  zr Z"= A= BRB 1 2 1  F 2 X (5.3.1)

%F %. I 1

Define the deiaio fro the -A 2  x )o h lsdlo

x x

00

Xi Define the deviation from the integral manifold (z .X,) L (x , of the closed-loop

.'motma yte 53.)b

0

oil.

w1S11cL
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7'= ! L-L x(5.3.2)

It is easy to see that with (5.3.2). (5.3.1) is equivalent to the following block triangular sNs-

Ptern:

x x

IF11 + F12 L F12 (3
I . (5.3.3)

0 F22-EL F Tj

-0 = -L 201
_ 0 = 0I7T 0 zA

The optimal control (5.2.6.a) in this new state space is

=-R 1(B1 A + B 2 (k,+L 2 1x +L 22 A))

-R -(BL 21x + (B 1 + B 2L, 2 ) X)-R - B2 A n =uN +u . (5.3.4)

The optimal control consists of two components, namely u, and un . The fast control.

u= -R -B 2 X,) governs the action of the deviation from the manifold and vanishes as the

optimal system is on the integral manifold. Clearly. the optimality conditions (5.3.3) and the

optimal control (5.3.4) become identical with (5.2.24)-(5.2.26) when the optimal system starts

with its conditions on the manifold or somehow converges to the manifold eventually. We

have a decoupled subsystem (-q . x ) from the optimality conditions together with the fast

control u,

I-= (5.3.5)
Z" 1 I k I ( F 2  EL F 1 2 ) 1 1 n 1 , = o 0 h ° 5

un = -R- 1 B2 '. (5.3.6-a)

Note that (5.3.5) is an 0 (6) perturbed version of the following optimality condition:

E 1 A 2 1 1 1 22  - B R . 21 7 1 0"1 ,1 1(5 3 6 bF 22
(r 22 h o a 2 2 pr 7b em

(5.3.6) corresponds to the following optimal problem:

L% 'n t
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=A, 22 + B, u,

Min J) Min SfrS +u' Ru dt

U7 ) U 7 ' 2 7

-1(0) =O ,l 71i() free.

For this optimal problem to have a unique optimal solution, we propose the following assump-

tion. A detailed proof can be found on P.237-238 in [32).

Assumption 5.3.1.

(A 22, B, S ) is a stabilizable-detectable triple.

It is easy to see from the block triangular system matrix in (5.3.3) that the decoupled

fast subsystem (5.3.5) has 2m fast eigenvalues with order O (1/e). Among these eigenvalues.

0m of these eigenvalues are symmetric to the other m eigenvalues with respect to the origin.

Recalling the nonsingularity assumption on F, 2 and the smallness of e , it can be similarly

shown, as in Theorem 5.2.1. that (5.3.5)-(5.3.6.a) correspond to the following optimal prob-

lem: .

67 = A2 eT + BE u (5.3. 7 .a)

Min Min
71 , , 77+ u, Ru dt (5.3.7.b)

U 2

-1r(0 ) = Tio r7(oo) free

where

(At 2 " B .S .R )=(A 2 B 2 S R)+O(e)

and its unique existence is guaranteed.

When the closed-loop optimal system (5.2.22) starts on the manifold, i. e., 7) = 0 . we have

the following by inspection on (5.3.7):

Su,(t)=0 t > 0.

With this observation we are again justified that the full-order optimal problem (5.2.1)-(5.2.2)

* _Jis equivalent to a lower order one, viz. (5.2.21). From standard textbooks on optimal con-

trol[31, 321 it is understood that a unique optimal solution to the fast subproblem (5.3.7)

0I
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exists provided (AE 2 . B, .S) is stabilizable-detectable. This condition is equivalent to

(A2 B, . S ) being stabilizable-detectable by a singular perturbation argument similar to

[33]. Due to the presence of e in the state equation (5.3.7.a). the closed-loop fast subsystem

tends to zero at the rate of 0 (1/) . In other words. this means that the trajectory of the

full-order optimal system (5.2.1)-(5.2.2) will converge to the integral manifold at the rate of

0 (1/6) and then flow along it slowly as its lower order counterpart described by (5.2.21).

To see how significant the deviation from the manifold contributes to the overall cost. we

look at the Hamiltonian-Jacobian Equations of (5.2.1)-(5.2.2) with the standard assumption

* - that J (x , z . t ) is continuously differentiable on the relevant domain.

0 - (xQx +zSz +uIRu)+(- )O (A Ux +A 12z +Blu)+(---)'(A 2 x +A ,z +B 2 u)-
2 Okx az

It is pointed out on p. 355 of [31] that the costates (X,, X) are such that

X" J ___O

Ox 8z
when evaluated along the optimal system (u (t) . x (t) Z (t)).

Consequently.

J =xx\ +z'X.

Recall the scaled costate variable X, = that we have been using in the optimality condi-

tions and the optimal controls, the optimal cost can be rewritten as

I =xXX +eZX.

Expressing this cost by the slow state variable (x . X, ) and the deviation from the integral

*, manifold (7). ,) we have,
J" =x'X, +e(TI+LIIx +L 12X,)'(X,+L 2 xx +L 2X,

=xX, + e(L 1 1 x +L 12X,)(L 21x + L 22X ) + e((L 1 x + L 12X, )?,+ 7)(L 2 1 x + L, 2 XX + X,

=4.1 (X (x XA ) + EJ 7 (X * X, T),XT).
* Note that J' = 0 for (rn . X ) = 0 and it weighs only 0 (e) in the overall optimal cost J"

7)5
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'We now illustrate the idea of decomposing optimal systems by integral manifold with

the following example.
19

Example 5.3.1

x =a x +b z (5.3.8.a)

ez -Z+U(5.3.8.b)

II,= 0 I Ax, f ree

Mm Mn r 22dt R R> 0 Q S u (5.3.8.c)
U u20

a. b. Q.S. and Rare scalars and 0 < 4E «1.

* Equation (5.3.8) is of an actuator form which is common in practice.

When E = 0 we obtain a reduced optimal problem

x =a x +bu x (0) = x . x (oo) free (5.3.9.a)

MnJ = JQX2+ (S + R ) U2dt (5.3.9.b)

U U

Its H-amiltonian is given by

H-(QX 2 + (S+ R) U2 ) + X(a X+ b U
2

Necessary conditions for optimality are

whence

S -b

Thus.

I N 1' 1
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b2
a-

S R Ix

x(0)=x0 X(T)=0.

When e ;d 0 . the Hamiltonian equation for (5.3.8) is

OWH --(Q x+ z+ R u2 ~(a x +b z)+A2 (u -z)
2

where AX, is the scaled costate of the original costate variable Az

Optimality conditions are

= Xz X+ Ru =0 =

au R

Ox

6H
A2  a - - b X, -Sx +A2z

Hence

x- a o b 0 x

ix - a 0 0 X lF121X

eQ- 0 0 A1 1 IF,1 F, A (5.3.10)

-1z R FXF 2
0 0b -S1-[x 0-0

F 2 2 =L 5 1

* ? R

Thus. (5.3.10) has an integral manifold

j ......

1 11 1 ri
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I x= ILI, L 1 2 x

=L X L 2 1 L I IX I

where L E R2x 2 satisfies 2 2XA4

F.,1 + F 2 2,L =eL (F 11 + F 1 2 L)

Solving for L,

L 0

ce(e) + t3(e)

L 12

-y(E)
L, 1 =eRQL 1 2

* where

ce)=-2e'RQb

f() (S + R 0 - e-a'))--4 4 ERQb'

/(e) = E2 RQb

Thus, on the manifold. (5.3.10) is equivalent to

=(F 11 + F 12L (e))I I=II (5-3-11)
x ~ ~ ~ x I k] L-Q -a LX

IX it= 0 = x0

U =- (L 2 1X + L 22 X) =6 -QL 2 1 X + (I -aL 12 X,.

* Note that we have two roots for L and we shall pick the one that satisfies

LOe =L+ 0 (e) - -'F 21 + 0(e)

% where

* NOW;
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1~' -bL o =-- F 01

-F 2 1S 1 0-b bR

0
S +R

It is easy to see by applying the LHospital's rule that

er li L 12 - 6

S +R

for

ca(E) + g(e)

L12 -

Also.

urn bR lir r

1 e--OL22 S +R 1E - 0 L1 e " 0L22= 0

With a little effort everyone can see immediately that the scalar optimal problem

. a =a x +b EU 
(5.3.12.a)

Min J Min 1 f Qx 2 + 2C, xu + RE u2 dt (5.3.12.b)

x(0)=x °
. x(oo) free

has the optimality conditions

beCe be

RE R

0

and optimal control 1

= - (Cx +bX.
RE

' If this optimal problem is to be the lower order equivalent of the full-orcdr pLImai systtm

(5.3.8) on the manifold, it is necessary that we have

4
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abL1  RE RE
(5 .3.13.a)

-Q- C, b ICf
-Q +

RE R

and

CE
-- = -eQL 1  (5.3.13.b)

bR 
E

-- = (0 ea )L 1. (5.3.13.0)
RE

Solving (5.3.13) we have

* I a E a +eQbL 1.

b= b

e 2Q 2bL 1

QE Q - (e)

RE b

C ebQ

CE (1-ea)

Therefore, the optimal control problem (5.3.8) is equivalent to the lower order optimal prob-

lem (5.3.12) with the above coefficients. Note that (a E . b E .R ,,B) reduces to

(a . b , Q , (S + R )) while C, vanishes at e = 0 . This shows that the equivalent lower order

optimal problem (5.3.12) becomes the reduced problem (5.3.9) when 6 = 0 . To construct the

optimal subproblem that governs the deviation from the manifold, we introduce El

S

as tedvainfothmaio.

M*1 HO
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Vith this it is easy to see from (5.3.5)-(5.3.7) that

R 0
E I-- -(S+1L21) 1 Xn =0o T?

-R

which corresponds to the optimal subproblem

"=. = -7 + U (5.3.14.a)

Min Min 1f) 2t(in f'= - (S + ebL + R u d 53.4b
UT, Un 2 f

-q(O) = - qo . r(oo) free

The stabilizing optimal control gives

M "' Ke - 0 + - -q 7() = o0

R.
where K > 0 satisfies the algebraic Riccati equation

K
K - (S + ebL21) -K (1 + R)

Thus. r7 (t) 0 at the rate of O (1/e) . For the case where the in tial conditions (x 0  zO)r do

not lie on the manifold, the optimal system will converge to its lower order equivalent at the

rate of 0 (1/) , and the behavior of the deviation is governed by the optimal subproblem

(5.3.14). As a whole, we have shown that

x =ax +bz

ezi = -z + U

4x1 
IxI f e= o free

00

SM in j M in i f S. + Q x 2 + R u 'dt R > 0 Q S >,0

Su u 2

is equivalent to the lower order optimal problem
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x =Ox + b'u

Min _ Min f '2+2~x ~2d
U U 2

X (0) = X x (oo) free

if (x0 z zO) belongs to a manifold.

0 Complete separation into two subproblemis

So far we have seen how a decoupled optimal subproblem concerning the deviation from

the manifold is formulated when the initial conditions of the full-order optimal system do not

start on the integral manifold. To get a complete separation &o the original optimal problem

into two subproblems. one slow and one fast. we need to block diagonalize the block triangular

* matrix in (5.3.3).

Introduce

lxl j IA 7Xj IX - r21 H22  '11 J

Differentiate both sides with respect to t

.2H

~(F11+ F 12L )I{ +e I"I +EH H( 2 L 1) F
1191' 17n I 1 0

-(F1 + F 12L ) + [e Fil 1 2 fL)H + F 12 -H(F 2 2 -eLF 12 )I ,

Now choose H4. which satisfies

e(F 1 + F12L )H + F 1 2 -H(F 22 - ELF 1 2) =O

2n X 2m4By the implicit function Theorem, a unique solution H E R to the above equation of the

form

12 +I e
exists for F 22 being nonsingular and 6 small enough. With this new state variable we have the

* r
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following:

=(F 11 + F 12L ) x xj (5.3.15)
t=0 X

I ' 1, 7 153.6

E7=(F 2 2 - eLF 1 2 ) IXT) X = 0 (.1)

= U . X) + U; (7). x,)

where the optimal control u from (5.2.6.a) in this state space consists of two components,

namely

u"( .xg) = -R '(B1 L 24 + (B' + B L 2)X ) (5.3.17)

and

u!: (7) , x )= -R-'B 2 X1. (5.3.18)

+ eR-' ( B2L 2 1 (H ,,I + H 2 X1,) )+(B, + B 2 L 2 2 )(H 2 r +H H22X77

Comparing (5.3.15) and ( 5.3.17) with (5.2.24) and (5.2.26). we know at once that the follow-

ing optimal problem would have optimality conditions and optimal control as (5.3.15) and

(5.3.17) respectively.

Ile. 9 Slow subproblem

- =A, + Bu (5.3.19.a)

Min -J, MQn f+ ,C + us'REus dt (5.2.21.b):.u u u. 2

f(O) = 60 , 6(oo) free

where (A BI CE Q, R,) are as in (5.2.28)-(5.2.32). In the same manner. (5.3.16) is simi-

lar to (5.3.5) whereas (5..3.18) is a perturbation of (5.3.6). Thus we have

* e Fast subproblem

.2 7r + Bu; (5.3.20.a)

Mm _ Mini1
Min i -T -fiSr+u eU dt (5.3.20.b)Su uf 2f

V.o
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TIM) = _00 .(oo) free

where

22; 2 SEJ )=(4,,,B,.S R)+O(E).

Both subproblems exist and are unique.

The transformation

X
- = IEH J 

(5.3.21)
z LI+ eLH T-

% *t'% *

is invertible and is expressed by

0X

+H X, (5.3.22)
7 = -L

A7) .
With (5.3.22) we have decomposed the full-order optimal problem (5.2.1)-(..2.2) into two

decoupled optimal subproblems, one slow and one fast. This is an exact decoupling and relies

on the nonsingularity assumption of F 2, and the smallness of e . Instead of solving the
1%*

(m + n )th order optimal problem (5.2.21)-(5.2.22). we can solve with ease the two lower
d.!*.

' order subproblems. (5.3.19) and (5.3.20).

@ Optimal problems over a large time interval with prescribed end states

We now consider the optimal problem of the following singularly perturbed system:

*~ ~ 
1 1 A 12 1X B

- A2 A2 2  + JB j xER. ze ER' u E Rr (5.3.23)I F .I r 2 1 2 2 B 2

' ".' .Min Min1"
SxQx + z Sz + u Ru dt (5.3.24)

* U u 2

ivo
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X A z T

0 = TX1"1-- t=--0 t ---- - g

kith the same description as in (5.2.1)-(5.2.2).

First of all we note that (5.3.23) is identical to (5.2.1), and (5.2.24) differs from (5.2.2) in

that the terminal time is not infinity but T. Also, since the trajectory is required to reach a

specified point, the final state conditions are no longer free.

.P' We shall be concerned with T being large and seek an approximate scheme to decompose our

optimal problems.

.. -.. , It was shown in a recent paper [34] that an approximate solution to problems of optimal con-

trol over a large time interval with end states prescribed

x Fx + Gu x (0) ,x (T) prescribed (5.3.25.a)

.r ; ., Min Min 1 f
J = x'Qx + u'Ru dt (5.3.25.b)

=U - f

R > 0 . Q > 0 , and JF . V" }is completely observable

can be obtained by piecing together the optimal trajectory and control of the two infinite time

problems

dX - Fx + Gu" (5.3.26.a)
; dt

Min J- Min

f x 1 'Qx + u R dt (5.3.26.b)

I

Sx-(O) = x (o) , x ) free

) dx
- = Fx + Gu (5.3.27.a)
ds

i - x - 'Qx + u"Ru ds (5.3.27.b)
'~~*U U 20

x (O)=x(T) x(o) free

In other words, the solution of a fixed end-point optimal control problem can be approximated

by superposition of two regulator problems.

*'



116

One easy way of piecing is

X t =' (T-t) t, < t T

where tm is defined to be the time where the two curves meet. ie x (ti,) = x (T - ti .

Furthermore.

Minj -( Minj)+ (Mini)
U U U

the sum of the cost of the two regulator problems approaches that of the fixed end-point prob-

lem (5.3.25) as T - oo

Equation (5.3.27) can be viewed as a regulator system in reverse time, while (5.3.26) is a regu-

lator system in forward time.

Applying this scheme to our fixed end-point, linear-quadratic regulator problem

(5.3.23)-(5.3.24), we have the forward regulator formulated as

~All A1 ,1xI JI

A. 1 A 1LJ + [BIU" x E R n  z'ER m  u'ER•ez :,A 1 A 22 z-

M 1= f x'Q + zs-' + u"Rz "dt (5.3.28)
uo

0- = - - free
k
* '  

, = =0 1z z =T

0-/ which is equivalent to the Following lower order optimal problem when the initial conditions

belong to a manifold.

x A x + B u"E,. E E

Mlin -Min -it= - f x,"(2'XI + u," Cx + u R u d

" X (0) = X xT (o) free

and the deviation from the manifold is an independent optimal problem described by

-7e A,

• .':.4. .. ,-
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")=A + +B' u-

Mi J 'Win f n 'S1 o -+uu R u dt (5.3.29)
IU - .rT] 4Esu 1  u_ 2

-I "T7

1 "(0) if(oo) free

The reverse regulator problem can be similarly defined and decomposed.

Overall. we propose the following approximate optimal control solution to the fixed end-

S' point optimal problem (5.3.25) by composing the solutions of several lower optimal problems

as

u (t) =u _(t) + * (T -t) + u.(t)+ u T-t)

By the above analysis. we can picture the optimal trajectory of the fixed end-point optimal

problem as shown in Figure 5.1. The trajectory converges to a manifold asymptotically and

then flow along it until it approaches the vicinity of the terminal time. where it leaves the

manifold and goes to the designated end states. It is u that brings the optimal trajectory to

the manifold. On the other hand. u'- is responsible for steering the trajectory away from the

manifold and going to the prescribed final points.

U ,

I S
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6. CONCLUSIONS

We have presented the necessary and sufficient conditions for the existence of the integral q

manifold in linear systems. It has been shown that in linear systems there exists a family of

input dependent integral manifolds if the existence of the manifold is assured in the zero input

case. The relationship between them is also given. Emphasis is given, though not exclusively,

to singularly perturbed systems. A two-stage design in the eigenvalue placement problem

clearly illustrates the usefulness of the integral manifold approach in reducing the computa-

tional complexity and a way to obtain an approximate solution in the singularly perturbed

systems. The effect of parasitics on the nominal states of the singularly perturbed systems can

be taken into account by using the manifold idea. This allows us to design a controller to

0achieve the tracking objective to any order of accuracy in such systems. All of these results

are described in Chapter 2.

In Chapter 3 we applied our results to the control'problem of flexible link manipulators.

The nonlinear system in this case was shown to be a perturbed version of a linear time-

invariant system. The unsatisfactory performance of flexible robots at high-frequency

maneuvers is explained by the fact that the presence of neglected flexibility causes a phase

delay in the system output. Time domain analysis using the integral manifold approach pro-

vides a corrective scheme which coincides with that based on the frequency domain analysis.

However. in a more general model where the Laplace transform is not applicable due to non-

linearity or time-varying characteristics in the system. the integral manifold approach is still

applicable and offers a solution in controller design. To extend our idea to the flexible joint

manipulators, we studied the effect of a flexible connection in an interconnected mechanical
0

system which also includes the flexible joint robot model as one of its kind. The flexible svs-

tern has a displaced center of mass with respect to that of the rigidly connected one. The flexi-

bilitv also induces a perturbed natural frequency and a perturbed damping ratio.
@ -T

0. -

mm •
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We focused on the problem of tracking and disturbance rejection in the nonlinear system

.* in Chapter 4. For a class of linear equivalent nonlinear system, linearizing and stabilizing the

nonlinear system render an integral manifold globally attractive. Based on this observation.

we designed a slowly varying integral control that drives the system along the manifold to its

equilibrium where the tracking error becomes zero. Regardless of initial conditions. asymp-

totic tracking and disturbance rejection of slowly varying signals can be achieved due to the

global attractivity of the manifold.

It is known[35] that the optimal trajectory of a long-range flight consists of steep ascend-

ing to a manifold, cruising along it with a fairly constant altitude, and finally descending to

the destination. This is precisely a typical optimal trajectory of a singularly perturbed sys-

tem. This leads to the analysis in Chapter 5. When the initial conditions are restricted to a

manifold. the optimal problem of a singularly perturbed linear system with quadratic cost

functional is shown to be equivalent to a lower order one. Regulation problems as well as

optimal problems over a large time interval with prescribed end states are both studied.

The tracking problem for flexible link robots can be viewed as controlling the robot tra-

jectory to a prescribed attractive manifold. This is certainly one of the future research areas.

Among other prominent research issues, the minimum-time-to-climb problem in aerodynamics

falls into the category of the singularly perturbed optimal system with constraints. An exten-

sion of ideas in Chapter 5 should be done to solve this well-known problem.

We have shown the use of the integral manifold in system designs through the limited

scope of this thesis. Extension of these ideas to other areas of system and control will

definitely be a future work with a unified theory and with countless applications.

6'
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